Spelling suggestions: "subject:"chlorella"" "subject:"hlorella""
81 |
Cultivo semicontínuo das microalgas Cyanobium sp. e Chlorella sp.Henrard, Adriano Seizi Arruda January 2009 (has links)
Dissertação(mestrado)- Universidade Federal do Rio Grande, Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, 2010. / Submitted by Caroline Silva (krol_bilhar@hotmail.com) on 2012-08-30T16:18:53Z
No. of bitstreams: 1
dissertao adriano arruda henrard.pdf: 1485086 bytes, checksum: f5665b2804865ca150fc4f99a546ffe6 (MD5) / Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2012-09-03T19:18:51Z (GMT) No. of bitstreams: 1
dissertao adriano arruda henrard.pdf: 1485086 bytes, checksum: f5665b2804865ca150fc4f99a546ffe6 (MD5) / Made available in DSpace on 2012-09-03T19:18:51Z (GMT). No. of bitstreams: 1
dissertao adriano arruda henrard.pdf: 1485086 bytes, checksum: f5665b2804865ca150fc4f99a546ffe6 (MD5)
Previous issue date: 2009 / As microalgas se destacam por apresentarem diversas potencialidades, como fonte de
alimento, obtenção de bioprodutos, produção de biocombustíveis e também podem contribuir na redução do efeito estufa, fixando CO2. As microalgas apresentam em sua composição alto teor de proteínas, ácidos graxos, minerais e pigmentos e, além disso, a microalga Chlorella possui certificado GRAS (Generally Recognized As Safe), podendo ser utilizada como alimento sem oferecer risco à saúde humana. Industrialmente, o cultivo semicontínuo de microalgas é muito empregado, pois com esse tipo de cultivo é possível a
manutenção da cultura em crescimento por períodos mais prolongados, procedendo-se
apenas a alimentação periódica do meio novo. O objetivo deste trabalho foi estudar o
crescimento das microalgas Cyanobium sp. e Chlorella sp. cultivadas em modo semicontínuo e diferentes condições nutricionais e de processo. Assim, este trabalho foi dividido em 3 etapas: na primeira, objetivou-se estudar os cultivos das microalgas Cyanobium sp. e Chlorella sp. em diferentes condições nutricionais e de processo; na segunda etapa, avaliou-se o cultivo semicontínuo da microalga Cyanobium sp. em fotobiorreator tubular vertical de 2 L e na terceira, estudou-se o cultivo da microalga Chlorella sp. em modo semicontínuo em fotobiorreator aberto tipo raceway de 6 L. Para avaliar o melhor meio nutriente e agitação, os cultivos foram realizados em fotobiorreatores tipo erlenmeyer e raceway de 0,5 L e 6 L, respectivamente. Os cultivos foram realizados em condições controladas, estufa climatizada a 30ºC, 3200 Lux e fotoperíodo 12 h claro/escuro. O melhor meio de cultivo para as microalgas Cyanobium sp. e Chlorella sp. foi o meio BG11 com adição de bicarbonato de sódio, onde foram obtidas as maiores concentrações celulares (0,56 e 0,66 g.L-1), velocidades específicas de crescimento (0,303 e 0,166 d-1) e produtividades (0,120 e 0,089 g.L-1.d-1), respectivamente. Quando cultivadas sob diferentes agitações, as melhores respostas foram obtidas nos ensaios realizados com agitação por 2 bombas submersas, com concentrações máximas de biomassa 1,21 e 0,93 g.L-1 para Cyanobium sp. e Chlorella sp, respectivamente. Para o cultivo em modo semicontínuo da microalga Cyanobium sp., a máxima velocidade específica de crescimento foi 0,127 d-1 quando o cultivo foi realizado com concentração de corte 1,0 g.L-1, taxa de renovação 50% e concentração de bicarbonato de sódio 1,0 g L-1. Os máximos valores de produtividade (0,071 g.L-1.d-1) e número de ciclo (10) foram observados em concentração de corte 1,0 g.L-1, taxa de renovação 30% e concentração de bicarbonato 1,0 g.L-1. No cultivo semicontínuo com Chlorella sp., a maior velocidade específica de crescimento (0,149 d-1) foi obtida
quando cultivada com 1,6 g.L-1 de bicarbonato de sódio e concentração de corte 0,6 g.L-1. A
maior produtividade (0,091 g.L-1.d-1) foi obtida quando utilizado no cultivo concentração de corte 0,8 g.L-1, taxa de renovação de meio 40% e concentração de bicarbonato de sódio 1,6 g.L-1. Os resultados mostraram que o cultivo em modo semicontínuo é uma alternativa para maximizar a produção de microalgas, além disso, o sistema de cultivo deve ser escolhido não apenas pela maior produtividade, mas também de acordo com as características desejadas do produto. / Microalgae had gain attention for presenting diverse potentialities, as source of food,
attainment of bioproducts, produce biofuels and also can contribute in the greenhouse effect reduction, fixing CO2. Microalgae presents in its composition high contents of protein, fatty acids, minerals and pigments, moreover, microalgae Chlorella possess the GRAS (Generally Recognized As Safe) certificate, being able to be used as food without offering any risk to the human health. The semicontinuous microalgae cultivation is very used, because of the long
period cells maintenance, being necessary the periodic feeding of new cultivation medium.
The objective of this work was to study the growth of the microalgae Cyanobium sp. and
Chlorella sp. cultivated in semicontinuous mode and different nutritional and process
conditions. This work was divided in three stages: in the first, the aim was to study the cultivation of the microalgae Cyanobium sp. and Chlorella sp. in different nutritional and process conditions; in the second stage, the semicontinuous cultivation of the microalgae Cyanobium sp. in vertical tubular photobioreactor of 2 L was evaluated; in the third, the culture of the microalgae Chlorella sp. was studied in semicontinuous mode in open photobioreactor type raceway of 6 L. To evaluate the best medium nutrient and agitation conditions, cultures were carried out under in photobioreactors type erlenmeyer and raceway of 0,5 L and 6 L, respectively. Cultures were carried out under controlled conditions, climatized greenhouse at 30ºC, 3200 Lux and 12 h photoperiod light/dark. The best culture medium for the microalgae Cyanobium sp. and Chlorella sp. was the BG11 medium with sodium bicarbonate addition, where were obtained the highest cell concentrations (0,56 and 0,66 g.L-1), specific growth rate (0,303 and 0,166 d-1) and productivity (0,120 and 0,089 g.L-
1.d-1), respectively. When cultivated under different agitation conditions, the best answers were obtained with agitation given by 2 submerged pumps, with maximum biomass
concentrations 1,21 g.L-1 for Cyanobium sp. and 0,93 g.L-1 for Chlorella sp. For the culture in semicontinuous mode of the microalga Cyanobium sp., the maximum specific growth rate was 0,127 d-1 in the culture with cell concentration 1,0 g.L-1, renewal rate 50% and sodium bicarbonate concentration 1,0 g.L-1. The maximum productivity values (0.071 g.L-1.d-1) and cycle number (10) had been observed in cell concentration 1,0 g.L-1, renewal rate 30% and 1,0 g.L-1 bicarbonate concentration. In the semicontinuous culture with Chlorella sp., the highest specific growth rate (0,149 d-1) was gotten when cultivated with 1,6 g.L-1.d-1 of sodium
bicarbonate and cell concentration 0,6 g.L-1). The highest productivity (0,091 g.L-1.d-1) was gotten when cell concentration 0,8 g.L-1, medium renewal rate 40% and sodium bicarbonate concentration 1,6 g.L-1 were used in the culture. Results had shown that semicontinuous mode culture is an alternative to maximize the microalgae production, moreover, the culture system must not only be chosen by the highest productivity, but also in accordance with the desired characteristics of the product.
|
82 |
Cultivo de microalgas com gases de combustão formados na geração termelétricaRadmann, Elisangela Martha January 2007 (has links)
Dissertação(mestrado) - Universidade Federal do Rio Grande, Programa de Pós-Graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, 2007. / Submitted by Caroline Silva (krol_bilhar@hotmail.com) on 2012-09-25T21:54:08Z
No. of bitstreams: 1
cultivo de microalgas com gases de combusto formados da gerao termeltrica.pdf: 1291931 bytes, checksum: 947e8e39923ea39e3dd24f11490dae18 (MD5) / Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2012-11-07T00:58:29Z (GMT) No. of bitstreams: 1
cultivo de microalgas com gases de combusto formados da gerao termeltrica.pdf: 1291931 bytes, checksum: 947e8e39923ea39e3dd24f11490dae18 (MD5) / Made available in DSpace on 2012-11-07T00:58:29Z (GMT). No. of bitstreams: 1
cultivo de microalgas com gases de combusto formados da gerao termeltrica.pdf: 1291931 bytes, checksum: 947e8e39923ea39e3dd24f11490dae18 (MD5)
Previous issue date: 2007 / O aumento da concentração de gás carbônico na atmosfera tem sensíveis conseqüências ambientais. Nos últimos anos a emissão de CO2 na atmosfera aumentou de 280ppm (1800) para 380ppm (2004), sendo cerca de 22% dessas
emissões causadas por plantas de energia termelétrica. Dentre as várias alternativas
para captura e utilização de CO2, uma abordagem particularmente interessante é o
emprego de microalgas. As microalgas se destacam por apresentarem diversas
potencialidades, como fonte de alimento e fonte para obtenção de bioprodutos, e
também podem contribuir na redução do efeito estufa, fixando CO2. As microalgas Chlorella e Spirulina apresentam em sua composição alto teor de proteínas, ácidos graxos, sais minerais e pigmentos, e além disso, possuem certificado GRAS(Generally Recognized As Safe), podendo ser utilizadas como alimento sem oferecer risco à saúde humana. A captura do CO2 do gás de combustão de carvão é possível usando microalgas, tanto por separação como por uso direto do gás de combustão, sendo este último mais vantajoso, em função de uma maior economia de energia.
Alguns agravantes podem influenciar no uso direto do gás de combustão como a alta
temperatura, concentração de CO2 acima de 15% e a presença de SOx, NOx e material
particulado (em especial cinzas), dificultando assim, o método direto, a menos que a microalga suporte condições extremas. O objetivo deste trabalho foi estudar a
utilização de gases de combustão do carvão provenientes da geração termelétrica,
para cultivo de microalgas. Previamente foi realizada seleção de microalgas quanto à
resistência a SO2 que pode ser formado da combustão do carvão para geração de energia elétrica. As microalgas estudadas foram Chlorella homosphaera, Scenedesmus obliquus e Spirulina sp. expostas a de 6% de CO2 e 30ppm de SO2. A máxima produtividade de biomassa alcançada foi 0,19 g.L-1.d-1 e concentração celular máxima 2,92 g.L-1, ambos para microalga Spirulina sp. Após estudou-se as microalgas S. obliquus e Spirulina sp. em um sistema de FBRs em série em diferentes
concentrações de CO2, SO2, NO e diferentes temperaturas. Foi alcançada concentração celular média máxima de 3,29 g.L-1 e fixação de CO2 máxima de 35,87%, ambos resultados para Spirulina sp. Seguindo o estudo em biofixação de CO2 por microalgas, foram isoladas as microalgas Synechococcus nidulans e Chlorella vulgaris da lagoa de estabilização da Usina Termelétrica Presidente Médici – UTPM/CGTEE, sul do Brasil. As microalgas isoladas foram cultivadas e comparadas com as microalgas Spirulina sp e S.s obliquus, em relação a biofixação de CO2. As microalgas foram expostas a 12% CO2, 60 ppm de SO2 e 100 ppm de NO, simulando um gás de combustão de carvão. A C. vulgaris apresentou comportamento semelhante a Spirulina sp., alcançando 13,43% de fixação diária máxima. Foi determinado o conteúdo lipídico e a composição em ácidos graxos das microalgas
Spirulina sp., S. obliquus, S. nidulans e C. vulgaris cultivadas em meio contendo 12%
de CO2, 60 ppm de SO2 e 100 ppm de NO à 30ºC. A microalga S. obliquus apresentou o maior teor lipídico (6,18%). Para as demais microalgas o conteúdo lipídico variou de
4,56 a 5,97%. O maior conteúdo em AGMI foi 66,01% para a S. obliquus. Os ácidos graxos poliinsaturados (PUFA) foram alcançados em maior quantidade pelas microalgas Spirulina sp. (29,37%) e S. nidulans (29,54%). Os resultados mostraram que o cultivo de microalgas enriquecido com os gases CO2, SO2 e NO, apresentaram uma biomassa rica em ácidos graxos, podendo estes ser utilizados tanto para a alimentação (ácidos graxos insaturados), quanto para produção de biocombustíveis(ácidos graxos saturados). Além disso, as microalgas estudadas podem contribuir na redução do aquecimento global. / The increasing concentration of carbon dioxide in the atmosphere has sensible
environmental consequences. In the recent years the concentration of CO2 in the
atmosphere increased from 280ppm (1800) to 380ppm (2004), around 22% of these emissions caused by coal fired power plants. Amongst several alternatives for the capture and application of the CO2, one of the most interesting overviews it is the use of microalgae. Microalgae are gain eminence for presenting potentiality, like a source of nutrients and for biofuels production, besides, they can contribute with the
greenhouse gas abatement, fixing CO2. Chlorella and Spirulina presents a high amount of proteins, fatty acids, minerals and pigments in their composition, besides, they have the GRAS certificate (Generally Recognized As Safe), allowing them to be used like food without offer any risk to the human health. The CO2 capture from the coal fired
flue gas is possible, as by the separation of the CO2 as by the direct use of the flue
gas, being the last one advantageous, due to the major energy economy. Some bottlenecks can influence the direct use of the flue gas like the high temperature of the gas, high CO2 concentration and the presence of SOx, NOx and particulate matter(specially ashes), becoming hard, thus the direct method, unless that the microalga could tolerate extreme conditions. The aim of this work was to study the utilization of coal fired flue gas from power plants in microalgal cultures. Previously, was carried out the selection of the microalgae resistant to SO2, witch can be formed in the coal fired power generation. The studied microalgae were Chlorella homosphaera, Scenedesmus obliquus and Spirulina sp. LEB-18 exposed to 6% CO2 and 30ppm SO2. The maximum biomass productivity was 0.19 g.L-1.d-1 and the maximum cell concentration was 2,92 g.L-1, both for Spirulina sp LEB-18. Later, S. obliquus and Spirulina sp. LEB-18 were studied in a serial FBRs system, at different concentration of CO2, SO2, NO and different temperatures. The average maximum cell concentration obtained was 3,29g.L- 1 and maximum CO2 fixation 35,87%, both results for Spirulina sp. Following the CO2 biofixation study by microalgae, the strains Synechococcus nidulans and Chlorella vulgaris were isolated from Presidente Médici’s wastewater treatment station, south of Brazil. The isolated strains were cultivated and their CO2 biofixation was compared with Spirulina sp and S. obliquus. The microalgae were exposed to 12% CO2, 60ppm SO2
and 100ppm NO, simulating the flue gas. C. vulgaris showed similar behavior to that of
Spirulina sp LEB-18, reaching 13,43% of maximum daily fixation. The lipid content and
the fatty acids composition were determined for Spirulina sp. LEB-18, S. obliquus, S.
nidulans e C. vulgaris, cultivated in a medium with 12% CO2, 60ppm SO2 and 100ppm
NO at 30°C. S. obliquus showed the major lipid content (6,18%). For the other
microalgae the lipid content ranged from 4,56 to 5,97%. The major AGMI content was
66,01% for S. obliquus. The PUFA were obtained in major amount by Spirulina sp.
LEB-18 (29,37%) and S. nidulans (29,54%). The results showed that microalgae cultures enriched with CO2, SO2 and NO, presented a fatty acids rich biomass, being able to be used as like a nutrient source (unsaturated fatty acids), as for biofuels production (saturated fatty acids). Besides, the studied microalgae can contribute for the global warm reduction.
|
83 |
Tracking an Algal Predator: Monitoring the Dynamics of Vampirovibrio Chlorellavorus in Outdoor CultureSteichen, Seth A., Steichen, Seth A. January 2016 (has links)
The environmental conditions created in the Southwestern deserts of the United States are conducive to the production of green microalgae biomass, for use as a feedstock intended for conversion to carbon neutral liquid biodiesel. One promising heat-tolerant, rapidly-growing, high lipid content species is the chlorophyte, Chlorella sorokiniana (Shihira and Krauss, 1965) (isolate DOE 1412), which has been selected for pilot-scale production as part of a larger algal biofuels project to assess its potential for long-term productivity in open, outdoor monoculture production systems. Molecular analysis exposed the presence of the pathogenic bacterium, Vampirovibrio chlorellavorus (Gromov & Mamkaeva, 1972) causing infection and death of DOE 1412, which occurred most rapidly at air temperatures exceeding 34 °C. This Gram-negative bacterium has been reported to attach to and utilize the cellular contents of several Chlorella species, leading to yellowing and flocculation of algal cells, and death of the host. A quantitative PCR assay was developed to monitor pathogen accumulation using the 16S ribosomal RNA gene, in addition to the algal 18S ribosomal RNA gene for normalization. The assay is highly sensitive, with limits of quantification for the 16S and 18S gene targets calculated to be 19 and 131 copies, respectively. The qPCR assay was used to monitor several outdoor reactors inoculated with the DOE1412, throughout the warm season growth-to-harvest cycle to understand the disease cycle and inform disease management decisions. Further, the bacterium was monitored in paddlewheel DOE 1412 cultures treated with benzalkonium chloride (BAC), a biocide tested for the ability V. chlorellavorus attack of DOE 1412. The treatment resulted in a reduced growth rate for DOE 1412, but prolonged the duration of the production cycle resulting in increased total harvestable yield, compared to untreated control cultures.
|
84 |
Application of Industrial Wastewater Effluent in Growth of Algae -- Effects of Heavy Metals on the Growth Rate, Fatty Acid and Lipid Content of Chlorella Sorokiniana and Scenedesmus ObliquusUdeozor, Jude Onyeka, Udeozor, Jude Onyeka January 2017 (has links)
Growing interest in biofuel production from non-fossil fuel sources has resulted in several studies exploring different raw material sources as feedstock, including many algae species, for large-scale production of biofuel. Algae are promising feedstock due to advantages such as its short growth cycle, high biomass production, and lipid content. However, there are still challenges to overcome in order to use algae for commercial biofuel production. One of these challenges is the requirement for a large quantity of water and nutrients needed for growing large quantities of the algae.
This work explores a potential solution to this challenge by studying the possibility of using industrial wastewater to grow algae for biofuel production. However, many industrial wastewaters, including effluents from semiconductor processing plants, are known to contain heavy metals that are toxic to humans and the environment. In this work, the effects of four of such metals ions, As(V), As(III), Ga(III), and In(III) on Chlorella sorokiniana and Scenedesmus obliquus strains were studied. In particular, the heavy metal toxicity on the strains, effects on its growth rate, biomass yield, lipid content and fatty acid methyl esters (FAME) were studied. Also, the effect of controlling pH on growth rate, biomass yield, lipid content, and FAME was studied for Chlorella sorokiniana in the presence of Ga(III).
The results of the study confirmed the toxicity of these metals on both strains. However, Ga(III) and In(III) had the highest effect, while As(V) showed the least toxicity to the strains, with Chlorella sorokiniana withstanding concentrations of As(V) as high as 140mg/L. The heavy metals were slightly more toxic to Scenedesmus obliquus compared to Chlorella sorokiniana. In addition, the heavy metals reduced the growth rate of both strains. High percent changes in growth rate (more than 50%) were seen in cultures containing Ga(III) and In(III). Furthermore, concentration measurements with Inductively Coupled Plasma Optical Emission Spectrometer (ICP) before, during, and at the end of the growth period, showed that Scenedesmus obliquus adsorbed higher amounts of the heavy metals compared to Chlorella sorokiniana. Microalgae biosorption of heavy metals limits its end use, hence making Scenedesmus obliquus a less favorable option for this study, but may be a better choice for wastewater treatment applications.
The effects of the four metals on the lipid content and FAME profile of Chlorella sorokiniana were studied. The result showed an increase in Chlorella sorokiniana lipid content in the presence of In(III), but a decrease in the presence of As(V) and As(III). The heavy metals had effects on the strain’s FAME compositions. The fatty acid composition included C16:0, C16:1, C16:2, C16:3, C18:0, C18:1, ω-6, C18:2, ω-6, and C18:3, ω-3 accounting for more than 97% of the total FAME composition. Furthermore, controlling the pH of the culture in the presence of Ga(III) at 6.5 led to higher adsorption of the heavy metal, increase in lipid content, but no significant change in FAME composition.
|
85 |
Assisted flocculation of Chlorella Sorokiniana by co-culture with filamentous fungiMackay, Stephen January 2015 (has links)
Philosophiae Doctor - PhD / Biofuel production from microalgae is currently not economically competitive with fossil fuels due to high operational costs. A sustainable system needs to be developed which considers cultivation, harvesting and conversion to fuels as a single loop. The harvesting step has been identified as a major bottleneck within the biofuel production process, contributing to a significant proportion of the operational cost (20-30%). Chemical flocculation is a more affordable alternative to centrifugation and filtration. Chemical flocculants however negatively impact the quality of biomass and conversion efficiency to biofuel by increasing biomass ash content. Bioflocculation with biopolymers or microbes have a minimal impact on the quality of biomass. In this study, the interaction between the filamentous fungus Isaria fumosorosea and the microalgae C. sorokiniana is investigated. Under strict autotrophic conditions at pH 7-8, co-culture of microalgae (2-20 μm) with fungal blastospores resulted in theidevelopment of large pellets (1-2 mm) which may be easily harvested by sedimentation or filtration at 95% harvesting efficiency. Fungal assisted bioflocculation was compared to other harvesting methods with respect to cost and impact on the hydrothermal conversion process. Low cost carbon sources, including waste hydrothermal nutrients, minimal sugar concentrations and algal exudate may reduce fungal cultivation costs. Waste products, such as organic carbon, N, P, CO₂ and trace metals can be recycled and used for algae and fungal cultivation, closing the loop to make the system sustainable. / National Research Foundation; Swiss Government
|
86 |
Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella VulgarisCheng, Tuoyuan 05 1900 (has links)
To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while
4
symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while ultrafiltration membrane rejected most biopolymers (mainly polysaccharides). Further research would focus on balancing cell growth, specific nutrients removal, and specific COD change by utilizing rotating biological contactor.
|
87 |
Využití odpadu ze zpracování fosforu za účelem produkce látek se zvýšenou přidanou hodnotou / Recovery of waste from processing of phosphorus to produce materials with increased added valueHejsek, Michal January 2015 (has links)
This master thesis focuses on reuse of waste water from industrial plant processing yellow phosphorus. Theoretical part summarizes physical and chemical properties of phosphorus, its transport in biosphere and its role in living organisms. Also the production process of the industrial plant is described. Waste water that contains waste byproducts is considered to be useful source of essential nutrients for economical large scale microalgae cultivation and development of biotechnological processes. In practical part, optimization of growth conditions for microalgae Chlorella pyrenoidosa Chick (IPPAS C-2) cultivation in medium based on wastewater from yellow phosphorus warehouse is presented.
|
88 |
Štandardizácia chovu Daphnia magna pre testy toxicityKučera, Štefan January 2018 (has links)
The diploma thesis is primarily focused on the standardization of Daphnia magna breeding in laboratory conditions of the Department of Zoology, Fisheries, Hydrobiology and Beekeeping at the Faculty of Agronomy of the Mendel University in Brno. The main aim of the work is to simplify the preparation of medium for breeding Daphnia magna due to time saving. During testing, we were interested in births and mortality of individuals observed during 14-day tests in two media. We focus on chemical and physical properties of the media, namely the pH, temperature and intensity of the light.
|
89 |
THE EFFECT OF LIGHT AND DARK PERIODS ON THE GROWTH OF CHLORELLA SOROKINIANA: MODELING & EXPERIMENTATIONKhoury, Farid F. 29 December 2020 (has links)
No description available.
|
90 |
A technique for harvesting unicellular algae using colloidal gas aphronsHoneycutt, Susan Smith January 1983 (has links)
M. S.
|
Page generated in 0.0452 seconds