• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional and morphometric study of the isolated chloride cell and respiratory cell from the gill epithelium of the Japanese eel, Anguilla Japonica (Temminck & Schlegel) /

Wong, Kong-chu. January 1996 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1996. / Includes bibliographical references (leaves 142-189).
2

Functional and morphometric study of the isolated chloride cell and respiratory cell from the gill epithelium of the Japanese eel,Anguilla Japonica (Temminck & Schlegel)

黃港住, Wong, Kong-chu. January 1996 (has links)
published_or_final_version / Zoology / Doctoral / Doctor of Philosophy
3

Early development and gill function in freshwater fish

Calta, M. January 1996 (has links)
No description available.
4

The chloride cell of the gill epithelium of Japanese eel, Anguilla japonica : adaptation in response to salinity change /

Yu, Mei-kuen. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 172-216).
5

The chloride cell of the gill epithelium of Japanese eel, Anguilla japonica: adaptation in response to salinitychange

余美娟, Yu, Mei-kuen. January 2000 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
6

The ontogeny of osmoregulation in the Nile tilapia (Oreochromis niloticus L.)

Fridman, Sophie January 2011 (has links)
In recent times, diminishing freshwater resources, due to the rapidly increasing drain of urban, industrial and agricultural activities in combination with the impact of climate change, has led to an urgent need to manage marine and brackish water environments more efficiently. Therefore the diversification of aquacultural practices, either by the introduction of new candidate species or by the adaptation of culture methods for existing species, is vital at a time when innovation and adaptability of the aquaculture industry is fundamental in order to maintain its sustainability. The Nile tilapia (Oreochromis niloticus, Linnaeus, 1758), which has now been spread well beyond its natural range, dominates tilapia aquaculture because of its adaptability and fast growth rate. Although not considered to be amongst the most salt tolerant of the cultured tilapia species, the Nile tilapia still offers considerable potential for culture in low-salinity water. An increase in knowledge of the limits and basis of salinity tolerance of Nile tilapia during the sensitive early life stages and the ability to predict responses of critical life-history stages to environmental change could prove invaluable in improving larval rearing techniques and extend the scope of this globally important fish species. The capability of early life stages of the Nile tilapia to withstand variations in salinity is due to their ability to osmoregulate, therefore the ontogeny of osmoregulation in the Nile tilapia was studied from spawning to yolk-sac absorption after exposure to different experimental conditions ranging from freshwater to 25 ppt. Eggs were able to withstand elevated rearing salinities up to 20 ppt, but transfer to 25 ppt induced 100% mortality by 48 h post-fertilisation. At all stages embryos and larvae hyper-regulated at lower salinities and hypo-regulated at higher salinities, relative to the salinity of the external media. Osmoregulatory capacity increased during development and from 2 days post-hatch onwards remained constant until yolk-sac absorption. Adjustments to larval osmolality, following abrupt transfer from freshwater to experimental salinities (12.5 and 20 ppt), appeared to follow a pattern of crisis and regulation, with whole-body osmolality for larvae stabilising at c. 48 h post-transfer for all treatments, regardless of age at time of transfer. Age at transfer to experimental salinities (7.5 – 20 ppt) had a significant positive effect on larval ability to osmoregulate; larvae transferred at 8 dph maintained a more constant range of whole body osmolality over the experimental salinities tested than larvae at hatch. Concomitantly, survival following transfer to experimental salinities increased with age. There was a significant effect (GLM; p < 0.05) of salinity of incubation and rearing media on the incidence of gross larval malformation that was seen to decline over the developmental period studied. It is well established that salinity exerts a strong influence on development and growth in early life stages of fishes therefore the effects of varying low salinities (0 - 25 ppt) on hatchability, survival, growth and energetic parameters were examined in the Nile tilapia during early life stages. Salinity up to 20 ppt was tolerable, although reduced hatching rates at 15 and 20 ppt suggest that these salinites may be less than optimal. Optimum timing of transfer of eggs from freshwater to elevated salinities was 3-4 h post-fertilisation, following manual stripping and fertilisation of eggs, however increasing incubation salinity lengthened the time taken to hatch. Salinity was related to dry body weight, with larvae in salinities greater than 15 ppt displaying, at hatch, a significantly (GLM: p < 0.05) lower body weight but containing greater yolk reserves than those in freshwater or lower salinities. Survival at yolk-sac absorption displayed a significant (GLM; p < 0.05) inverse relationship with increasing salinity and mortalities were particularly heavy in the higher salinities of 15, 20 and 25 ppt. Mortalities occurred primarily during early yolk-sac development yet stabilised from 5 dph onwards. Salinity had a negative effect on yolk absorption efficiency (YAE). Salinity-related differences in oxygen consumption rates were not detectable until 3 days post-hatch; oxygen consumption rates of larvae in freshwater between days 3 – 6 post-hatch were always significantly higher (GLM p < 0.05) than those in 7.5, 15, 20 and 25 ppt, however, on day 9 post-hatch this pattern was reversed and freshwater larvae had a significantly lower QO2 than those in elevated salinities. Salinity had a significant inverse effect on larval standard length, with elevated salinities producing shorter larvae from hatch until 6 dph, after which time there was no significant differences between treatments. Salinity had a significant effect on whole larval dry weight, with heavier larvae in elevated salinities throughout the yolk-sac period (GLM; p < 0.05). The ability of the Nile tilapia to withstand elevated salinity during early life stages is due to morphological and ultrastructural modifications of extrabranchial mitochondria-rich cells (MRCs) that confer an osmoregulatory capacity before the development of the adult osmoregulatory system. A clearly defined temporal staging of the appearance of these adaptive mechanisms, conferring ability to cope with varying environmental conditions during early development, was evident. Ontogenetic changes in MRC location, 2-dimensional surface area, density and general morphological changes were investigated in larvae incubated and reared in freshwater and brackish water (15 ppt) from hatch until yolk-sac absorption using Na+/K+-ATPase immunohistochemistry with a combination of microscope techniques. The pattern of MRC distribution was seen to change during development under both treatments, with cell density decreasing significantly on the body from hatch to 7 days post-hatch, but appearing on the inner opercular area at 3 days post-hatch and increasing significantly (GLM; p < 0.05) thereafter. Mitochondria-rich cells were always significantly (GLM; p < 0.05) denser in freshwater than in brackish water maintained larvae. In both freshwater and brackish water, MRCs located on the outer operculum and tail showed a marked increase in size with age, however, cells located on the abdominal epithelium of the yolk-sac and the inner operculum showed a significant decrease in size (GLM; p < 0.05) over time. Mitochondria-rich cells from brackish water maintained larvae from 1 day post-hatch onwards were always significantly larger (GLM; p < 0.05) than those maintained in freshwater. Preliminary scanning electron microscopy studies revealed structural differences in chloride cell morphology that varied according to environmental conditions. Mitochondria-rich cell morphology and function are intricately related and the plasticity or adaptive response of this cell to environmental changes is vital in preserving physiological homeostasis and contributes to fishes’ ability to inhabit diverse environments. Yolk-sac larvae were transferred from freshwater at 3 days post-hatch to 12.5 and 20 ppt and sampled at 24 and 48 h post-transfer. The use of scanning electron microscopy allowed a quantification of MRC, based on the appearance and surface area of their apical crypts, resulting in a reclassification of ‘sub-types’ i.e. Type I or absorptive, degenerating form (surface area range 5.2 – 19.6 μm2), Type II or active absorptive form (surface area range 1.1 – 15.7 μm2), Type III or differentiating form (surface area range 0.08 – 4.6 μm2) and Type IV or active secreting form (surface area range 4.1 – 11.7 μm2). In addition, the crypts of mucous cells were discriminated from those of MRCs based on the presence of globular extensions and similarly quantified.
7

Ecology of aquatic insects in monsoonal temperate glacier streams of Southeast Tibet: A departure from the conceptual model

Fair, Heather Lynne January 2017 (has links)
No description available.
8

Modélisation multiphysique de cellules sodium chlorure de nickel / Multiphysics modeling of sodium nickel chloride cells

Christin, Rémy 09 December 2015 (has links)
La montée en puissance des systèmes de production de l'énergie électrique, à partir de centrales éoliennes ou photovoltaïques, a fait apparaître un besoin aigu en moyens de stockage de cette énergie. Les technologies d'accumulateurs électrochimiques sont à même de répondre à cette problématique, en particulier les batteries sodium chlorure de nickel, une technologie d'accumulateur à haute température. Mais afin de gérer au mieux les performances de ces batteries, il est nécessaire d'avoir une connaissance approfondie du comportement électrothermique des cellules unitaires les composant. Ce travail de thèse présente en détail le développement d'un modèle multiphysique 2D d'une cellule Na-MCl2 commerciale, à même de simuler son fonctionnement en décharge à courant constant. Ce modèle a été construit sur une étude approfondie des mécanismes électrochimiques à l'œuvre dans ce type de technologie, et des effets thermiques associés. Il repose également sur la synthèse et la critique des modèles proposés précédemment dans la littérature. Le modèle inédit proposé dans ce manuscrit permet de prendre en compte deux réactions électrochimiques simultanées, ainsi que le comportement thermique de la cellule. Le modèle a été validé en confrontant les résultats de simulations aux performances électriques réelles d'une cellule commerciale Na-MCl2 (incluant une caractérisation des phénomènes électrochimiques par voltammetrie cyclique). Ce modèle permet de simuler avec succès des décharges à courant constant à différents régimes, et à partir de différentes températures. Il est également capable de prévoir les effets électrothermiques qui seraient consécutifs à un changement de design de la cellule (design structurel et de constitution). / The growing production capacity of wind turbines or photo-voltaic plants has revealed an acute need for electric energy storage systems. Electrochemical accumulator technologies are able to address this issue, in particular sodium nickel chloride batteries, a high temperature battery system. But to enhance the energy management of these batteries, it is necessary to have a deep knowledge of the electro-thermal behavior of its unit cell component. This thesis presents the development of a comprehensive multiphysics 2D model of a commercial Na-MCl2 cell, able to simulate its operation in constant current discharge. This model was built on a thorough study of electrochemical mechanisms at work with this type of technology, and its associated thermal effects. It is also based on the synthesis of existing models, and their critique. The new model proposed in this manuscript can take into account two simultaneous electrochemical reactions, as well as the thermal behavior of the cell. The model was validated by comparison between simulation results and the actual electrical performances of a commercial Na-MCl2 cell (including the characterization of electrochemical phenomena by cyclic voltammetry). This model successfully simulates constant current discharges at different rates, and from different temperatures. It is also capable of predicting the electro-thermal effects consecutive to design changes of the cell (structural and relevant to the active material).
9

Efeitos da exposição à fração solúvel da gasolina em parâmetros bioquímicos e fisiológicos de Prochilodus lineatus

Simonato, Juliana Delatim 19 May 2010 (has links)
Made available in DSpace on 2016-06-02T19:29:26Z (GMT). No. of bitstreams: 1 3129.pdf: 1211425 bytes, checksum: fe662cd2f2192794e3ea63b146284d10 (MD5) Previous issue date: 2010-05-19 / Universidade Federal de Sao Carlos / The aim of this work was to evaluate the effects of the water-soluble fraction of gasolina (WSFG) to the Neotropical fish Prochilodus lineatus. The WSFG was prepared by adding gasoline to water (1:4) this mixture was then exposed to intense sunlight for 6h, simulating a gasoline spill in tropical conditions. After that the upper insoluble phase was discharged and the WSFG was collected. Fish were exposed for 6, 24 and 96h to the WSFG diluted to 5% (EXP group) or only to water (control group or CTR). The following parameters were analyzed: biochemical (antioxidants and EROD) of gills and liver, hematologic, osmo-ionic, metabolic, endocrine (cortisol) besides the density and distribution of chloride cells (CC) and the activity of gills Na+/K+-ATPase (NKA). The increased in ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) activity indicated phase I and II biotransformation of the compounds present in the WSFG in both organs. The activation of CYP1A in the gills pointed out the importance of this organ in the biotransformation of xenobiotics. The liver showed an increase in reduced glutathione (GSH) content at 24 and 96 h exposure to WSFG and the increase in the activity of catalase (CAT) and glutathione peroxidase (GPx) after 96 h exposure. The gills showed an activation of the antioxidant defenses with an increased CAT activity soon after 6h exposure and an increase in GSH content after 24h exposure. However, for both organs the antioxidants defense was not enough to prevent oxidative damage, as shown by the occurrence of lipid peroxidation in liver and gills after 6 and 96h of exposure, respectively. The WSFG also promoted hemolysis, as indicated by the changes in the hematological parameters analyzed and an increase in plasma K+. Fish showed a secondary stress response, noted by the occurrence of hyperglycemia in all the periods of exposure, despite no significant increase in plasma cortisol. The WSFG also lead to an increase in the density of CC, in the activity of NKA, in plasma concentrations of Na+ and in the osmolarity in fish exposed to WSFG for 24h. Taken together these results showed that the compounds present in the WSFG interfere on the functioning of vital organs such as liver and gills of Prochilodus lineatus. / O objetivo deste trabalho foi avaliar os possíveis efeitos da fração solúvel da gasolina (FSG) em alguns parâmetros bioquímicos e fisiológicos do peixe neotropical Prochilodus lineatus. A FSG foi preparada misturando-se gasolina em água (1:4), essa mistura foi exposta à radiação solar intensa durante 6 h, simulando um derrame de gasolina em condições tropicais. Após, a FSG foi coletada e a fração insolúvel foi descartada. Os animais foram expostos por 6, 24 e 96 h à FSG diluída 5 % (grupo EXP) ou apenas à água (grupo controle ou CTR). Foram analisados parâmetros bioquímicos (antioxidantes e indução da CYP1A) em brânquia e fígado, hematológicos, osmo-iônicos, metabólicos, endócrino (cortisol) além da densidade e distribuição de células-cloreto (CC) e a atividade da enzima Na+/K+-ATPase (NKA) nas brânquias. O aumento na atividade da etoxiresorufina-O-desetilase (EROD) e da glutationa-S-transferase (GST) indicou a estimulação das vias de biotransformação de fase I e II dos compostos da FSG em ambos os órgãos. A ativação das enzimas de detoxificação nas brânquias ressaltou a importância deste órgão na biotransformação de xenobióticos. O fígado apresentou aumento na concentração de glutationa reduzida (GSH) após 24 h e 96 h de exposição à FSG e aumento na atividade catalase (CAT) e glutationa peroxidase (GPx) após 96 h de exposição. As brânquias mostraram uma ativação das vias antioxidantes com o aumento da CAT logo após 6 h de exposição, e da concentração de GSH após 24 h de exposição. No entanto, para ambos os órgãos estudados, a ativação das defesas antioxidantes não foi suficiente para impedir os danos oxidativo, como indicado pela ocorrência de peroxidação lipídica (LPO) no fígado e nas brânquias após 6 e 96 h de exposição, respectivamente. A FSG também provocou hemólise comprovada pela diminuição dos parâmetros hematológicos analisados, seguido pelo aumento do K+ plasmático. Os peixes mostraram uma resposta secundária de estresse visualizado pela ocorrência da hiperglicemia em todos os períodos de exposição, apesar da ausência de diferenças significativas na concentração plasmática do cortisol. A FSG também provocou aumento na densidade das CC, na atividade da NKA, nas concentrações plasmáticas do Na+ e osmolaridade nos animais expostos durante 24 h. Esses resultados em conjunto indicam que os compostos presentes na FSG afetaram de maneira significativa órgãos vitais como o fígado e as brânquias do Prochilodus lineatus.

Page generated in 0.0658 seconds