Spelling suggestions: "subject:"circumstellar matter"" "subject:"circunstellar matter""
61 |
HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKSDodson-Robinson, Sarah E., Su, Kate Y. L., Bryden, Geoff, Harvey, Paul, Green, Joel D. 16 December 2016 (has links)
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here we present new Herschel PACS and re-analyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14" along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS PSF size (50% of energy enclosed within radius 4.23"). HD 105211 also has a 24 mu m infrared excess that was previously overlooked because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a(min) similar to 3 mu m, although the a(min) is larger than the radiation pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of model blackbody disks. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 x 10(-5) <= L/L-circle dot <= 2 x 10(-4) , consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.
|
62 |
Rise and fall of the dust shell of the classical nova V339 DelphiniEvans, A., Banerjee, D. P. K., Gehrz, R. D., Joshi, V., Ashok, N. M., Ribeiro, V. A. R. M., Darnley, M. J., Woodward, C. E., Sand, D., Marion, G. H., Diamond, T. R., Eyres, S. P. S., Wagner, R. M., Helton, L. A., Starrfield, S., Shenoy, D. P., Krautter, J., Vacca, W. D., Rushton, M. T. 13 January 2017 (has links)
We present infrared spectroscopy of the classical nova V339 Del, obtained over an similar to 2-yr period. The infrared emission lines were initially symmetrical, with half width half-maximum velocities of 525 km s(-1). In later (t greater than or similar to 77 d, where t is the time from outburst) spectra, however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at approximately day 34.75 at a condensation temperature of 1480 +/- 20 K, consistent with graphitic carbon. Thereafter, the dust temperature declined with time as T-d alpha t(-0.346), also consistent with graphitic carbon. The mass of dust initially rose, as a result of an increase in grain size and/or number, peaked at approximately day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. The appendix summarizes Planck means for carbon and the determination of grain mass and radius for a carbon dust shell.
|
63 |
The rebirth of Supernova 1987A : a study of the ejecta-ring collisionGröningsson, Per January 2008 (has links)
Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The high-ionization line profiles (Fe X-XIV) initially show larger spectral widths, which indicates that at least a fraction of the emission comes from non-radiative shocks.
|
64 |
Probing the circumstellar disks of classical Be stars with optical and near-infrared spectroscopy /Hesselbach, Erica N. January 2009 (has links)
Dissertation (Ph.D.)--University of Toledo, 2009. / Typescript. "Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics ." Bibliography: leaves 71-74.
|
65 |
Superluminous supernovae : theory and observationsChatzopoulos, Emmanouil 25 October 2013 (has links)
The discovery of superluminous supernovae in the past decade challenged our understanding of explosive stellar death. Subsequent extensive observations of superluminous supernova light curves and spectra has provided some insight for the nature of these events. We present observations of one of the most luminous self-interacting supernovae ever observed, the hydrogen-rich SN 2008am discovered by the Robotic Optical Transient Search Experiment Supernova Verification Project with the ROTSE-IIIb telescope located in the McDonald Observatory. We provide theoretical modeling of superluminous supernova light curves and fit the models to a number of observed events and similar transients in order to understand the mechanism that is responsible for the vast amounts of energy emitted by these explosions. The models we investigate include deposition of energy due to the radioactive decays of massive amounts of nickel-56, interaction of supernova ejecta with a dense circumstellar medium and magnetar spin-down. To probe the nature of superluminous supernovae progenitor stars we study the evolution of massive stars, including important effects such as rotation and magnetic fields, and perform multi-dimensional hydrodynamics simulations of the resulting explosions. The effects of rotational mixing are also studied in solar-type secondary stars in cataclysmic variable binary star systems in order to provide an explanation for some carbon-depleted examples of this class. We find that most superluminous supernovae can be explained by violent interaction of the SN ejecta with >1 Msun dense circumstellar shells ejected by the progenitor stars in the decades preceding the SN explosion. / text
|
66 |
HD 104860 and HD 192758: Two Debris Disks Newly Imaged in Scattered Light with the Hubble Space TelescopeChoquet, É., Bryden, G., Perrin, M. D., Soummer, R., Augereau, J.-C., Chen, C. H., Debes, J. H., Gofas-Salas, E., Hagan, J. B., Hines, D. C., Mawet, D., Morales, F., Pueyo, L., Rajan, A., Ren, B., Schneider, G., Stark, C. C., Wolff, S. 12 February 2018 (has links)
We present the first scattered-light images of two debris disks around the F8 star HD. 104860 and the F0V star HD. 192758, respectively similar to 45 and similar to 67. pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD. 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of similar to 114. au inclined by similar to 58 degrees. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD. 192758 reveal a disk at radius similar to 95. au inclined by similar to 59 degrees, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD. 92945, HD. 202628, and HD. 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.
|
67 |
VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512Ricci, L., Rome, H., Pinilla, P., Facchini, S., Birnstiel, T., Testi, L. 25 August 2017 (has links)
We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-rich disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.
|
68 |
Une vie interférométrique des disques d'étoiles chaudes / An interferometric view of hot stars disksMoser Faes, Daniel 06 October 2015 (has links)
L’interférométrie optique/IR à longue base a été récemment mise en place comme une technique capable de résoudre spatialement les étoiles et leurs environnements circumstellaires au niveau de la milliseconde d'angle (mas). Cette haute résolution ouvre toute une nouvelle fenêtre pour l'étude des systèmes astrophysiques, fournissant des informations inaccessibles par d'autres techniques. Les disques astrophysiques sont observés dans une grande variété de systèmes, de galaxies jusqu'aux anneaux planétaires, partageant communément des processus physiques similaires. Deux disques particuliers sont étudiés dans la thèse: (i) les étoiles B He-riches qui présente des champs magnétiques de l'ordre de kG et que confine leurs vents dans des structures appelées magnétosphères; et (ii) les étoiles Be, rotateurs rapides qui présentent des disques circumstellaires épisodiques. Cette étude utilise la technique interférométrique pour étudier à la fois la photosphère et l'environnement circumstellaire de ces étoiles. L'objectif est de combiner l'interférométrie avec d'autres techniques d'observation (telles que la spectroscopie et la polarimétrie) pour effectuer une description physique complète et bien contraindre ces systèmes. Cette description est acquise par l'interprétation de l'ensemble des observations par des modèles de transfert radiatif. / Optical long baseline interferometry was recently established as a technique capable of resolving stars and their circumstellar environments at the milliarcsecond (mas) resolution level. This high-resolution opens an entire new window to the study of astrophysical systems, providing information inaccessible by other techniques. Astrophysical disks are observed in a wide variety of systems, from galaxies up to planetary rings, commonly sharing similar physical processes. Two particular disk like systems are studied in the thesis: (i) B He-rich stars that exhibits magnetic fields in order of kG and that trap their winds in structures called magnetospheres; and (ii) Be stars, fast rotating stars that create circumstellar viscous disks. This study uses the interferometric technique to investigate both the photosphere proper and the circumstellar environment of these stars. The objective is to combine interferometry with other observational techniques (such as spectroscopy and polarimetry) to perform a complete and well-constrained physical description of these systems. This description is accompanied by radiative transfer models.
|
69 |
The Inner 25 au Debris Distribution in the ϵ Eri SystemSu, Kate Y. L., De Buizer, James M., Rieke, George H., Krivov, Alexander V., Löhne, Torsten, Marengo, Massimo, Stapelfeldt, Karl R., Ballering, Nicholas P., Vacca, William D. 25 April 2017 (has links)
Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 mu m resolved disk image of is an element of Eri, the closest debris disk around a star similar to the early Sun. Combining with the Spitzer resolved image at 24 mu m and 15-38 mu m excess spectrum, we examine two proposed origins of the inner debris in is an element of Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.
|
70 |
Polarimetric models of circumstellar discs including aggregate dust grainsMohan, Mahesh January 2016 (has links)
The work conducted in this thesis examines the nature of circumstellar discs by investigating irradiance and polarization of scattered light. Two circumstellar discs are investigated. Firstly, H-band high contrast imaging data on the transitional disc of the Herbig Ae/Be star HD169142 are presented. The images were obtained through the polarimetric differential imaging (PDI) technique on the Very Large Telescope (VLT) using the adaptive optics system NACO. Our observations use longer exposure times, allowing us to examine the edges of the disc. Analysis of the observations shows distinct signs of polarization due to circumstellar material, but due to excessive saturation and adaptive optics errors further information on the disc could not be inferred. The HD169142 disc is then modelled using the 3D radiative transfer code Hyperion. Initial models were constructed using a two disc structure, however recent PDI has shown the existence of an annular gap. In addition to this, the annular gap is found not to be devoid of dust. This then led to the construction of a four-component disc structure. Estimates of the mass of dust in the gap (2:10x10⁻⁶ M⊙) are made as well as for the planet (≈1:53 x 10⁻⁵ M⊙ (0.016MJupiter)) suspected to be responsible for causing the gap. The predicted polarization was also estimated for the disc, peaking at 14 percent. The use of realistic dust grains (ballistic aggregate particles) in Monte Carlo code is also examined. The fortran code DDSCAT is used to calculate the scattering properties for aggregates which are used to replace the spherical grain models used by the radiative transfer code Hyperion. Currently, Hyperion uses four independent elements to de ne the scattering matrix, therefore the use of rotational averaging and a 50/50 percent population of grains and their enantiomers were explored to reduce the number of contributing scattering elements from DDSCAT. A python script was created to extract the scattering data from the DDSCAT output les and to apply a size distribution to the data. The second circumstellar disc investigated is the debris disc of the M dwarf star AU Mic. The disc was modelled, using the radiative transfer code Hyperion, based on F606W (HST) and JHK0-band (Keck II) scattered light observations and F606Wband polarized light observations. Initially, the disc is modelled as a two component structure using two grain types: compact silicate grains and porous dirty ice water. Both models are able to reproduce the observed SED and the F606W and H-band surface brightness pro les, but are unable to t the observed F606W degree of polarization. Therefore, a more complex/realistic grain model was examined (ballistic aggregate particles). In addition, recent millimetre observations suggest the existence of a planetesimal belt < 3 AU from the central star. This belt is included in the BAM2 model and was successful in fitting the observed SED, F606W and H-band surface brightness and F606W polarization. These results demonstrate the limitations of spherical grain models and indicate the importance of modelling more realistic dust grains.
|
Page generated in 0.0771 seconds