Spelling suggestions: "subject:"classificacao"" "subject:"classificacão""
81 |
Mapeamento digital de solos e o mapa de solos como ferramenta para classificação de aptidão de uso das terras / Digital soil mapping and soil map as a tool for classification of land suitabilityHöfig, Pedro January 2014 (has links)
No Brasil, a execução de mapeamento de solos em todo o território nacional é uma demanda permanente das instituições de pesquisa e por órgãos de planejamento, dado que é uma importante ferramenta para o planejamento da ocupação racional das terras. O Mapeamento Digital de Solo (MDS) surge como alternativa para aumentar a viabilidade de execução de levantamentos de solos, utilizando-se de informações relacionadas ao relevo para mapear os solos. Este estudo objetiva testar metodologias de MDS com extrapolação para área fisiografimente semelhante e reclassificar o mapa pedológico gerado por MDS para criar um mapa de aptidão agrícola das terras e compará-lo com o mapa interpretativo gerado a partir do mapa convencional. Tendo em vista a escassez de dados existentes na Encosta do Sudeste do Rio Grande do Sul, o trabalho foi realizado em Sentinela do Sul e Cerro Grande do Sul. O MDS usou como modelos preditores um modelo geral de árvore de decisão (AD), testando-se um modelo para toda área e também o uso conjunto de dois modelos de predição. Uma vez que o MDS mapeia normalmente classes e propriedades dos solos e que desconhece-se o uso de tal técnica para gerar mapas de aptidão agrícola das terras, parte-se da hipótese que estes mapas possam ser criados a partir da reclassificação do mapa de solos gerados por MDS. O uso de modelos conjuntos de AD gerou modelos com mais acertos e maior capacidade de reprodução do mapa convencional de solos. A extrapolação para o município de Cerro Grande do Sul se mostrou eficiente. Ao classificar a aptidão agrícola das terras, a concordância entre o mapa convencional e os mapas preditos foi maior do que a concordância entre os mapas de solos. / In Brazil, the implementation of soil mapping throughout the national territory is a constant demand of research institutions and planning organs, as it is an important tool for rational planning of land occupation. Digital Soil Mapping (DSM) is an alternative to increase the viability of the soil survey because plots the information based on the relief to draw the soil map. This study aims to test methodologies DSM applied to similar landscapes areas. It also aims to reclassify the pedological map generated by DSM to create a new land suitability classes map and compare it with the land suitability classes map generated from conventional maps. The study was conducted in South Sentinel and Cerro Grande do Sul considering the lack of data in that area. The MDS was generated using a global model of decision tree (DT) for the entire area and combined with the use of two predictive models. The use of DSM to land suitability classes map is unknown. Perhaps interpretive maps created from the reclassification of DSM can produce more accurate maps than the predictor model would generate of the pedological map. The use of set models of DT created models with greater hits and higher reproductive capacity of the conventional map. The extrapolation to Cerro Grande do Sul was efficient . The DSM was more efficient to classify land suitability classes than to classify pedological maps, but this system of land sutability needs adjustments to reflect the local reality.
|
82 |
[en] PERSONAL ORNAMENTS: A REFLEXION ABOUT SOCIAL RELATIONS, DESIGN, PRODUCTION AND ACADEMIC EDUCATION / [pt] ADORNOS PESSOAIS: UMA REFLEXÃO SOBRE AS RELAÇÕES SOCIAIS, PROCESSO DE DESIGN, PRODUÇÃO E FORMAÇÃO ACADÊMICAIRINA ARAGAO DOS SANTOS 27 January 2004 (has links)
[pt] O homem como ser social faz uso de variados veículos de
expressão e comunicação de suas idéias. Os objetos surgem
como facilitadores de sua existência, inclusive como
suportes das relações sociais. Dentro do vasto universo de
objetos produzidos pela humanidade, destacamos os adornos
pessoais - jóias, como aqueles aos quais inúmeros usos e
significados são atribuídos. Na presente dissertação será
traçado um panorama deste objeto na sociedade brasileira
nos dias atuais. Objetiva-se localizar o designer dentro do
setor de jóias e gemas nacional, compreendendo a sua
relação com o setor produtivo e as oportunidades de
formação especializada. / [en] Man is a social being and, as such, makes use of various
means to express and communicate his ideas. He uses objects
to make his existence easier, inclusively in support of his
social relations. Within the ample universe of objects
created by humanity, we point out personal ornaments -
jewels, to which sometimes different usages and meanings
are attributed. In this paper we provide an overview of
these objects in present-day Brazilian society. Our aim is
to place the designer within the Brazilian gem and jewelry
industry and describe his relation with the productive
sector and the opportunities for specialization.
|
83 |
Mapeamento digital de solos e o mapa de solos como ferramenta para classificação de aptidão de uso das terras / Digital soil mapping and soil map as a tool for classification of land suitabilityHöfig, Pedro January 2014 (has links)
No Brasil, a execução de mapeamento de solos em todo o território nacional é uma demanda permanente das instituições de pesquisa e por órgãos de planejamento, dado que é uma importante ferramenta para o planejamento da ocupação racional das terras. O Mapeamento Digital de Solo (MDS) surge como alternativa para aumentar a viabilidade de execução de levantamentos de solos, utilizando-se de informações relacionadas ao relevo para mapear os solos. Este estudo objetiva testar metodologias de MDS com extrapolação para área fisiografimente semelhante e reclassificar o mapa pedológico gerado por MDS para criar um mapa de aptidão agrícola das terras e compará-lo com o mapa interpretativo gerado a partir do mapa convencional. Tendo em vista a escassez de dados existentes na Encosta do Sudeste do Rio Grande do Sul, o trabalho foi realizado em Sentinela do Sul e Cerro Grande do Sul. O MDS usou como modelos preditores um modelo geral de árvore de decisão (AD), testando-se um modelo para toda área e também o uso conjunto de dois modelos de predição. Uma vez que o MDS mapeia normalmente classes e propriedades dos solos e que desconhece-se o uso de tal técnica para gerar mapas de aptidão agrícola das terras, parte-se da hipótese que estes mapas possam ser criados a partir da reclassificação do mapa de solos gerados por MDS. O uso de modelos conjuntos de AD gerou modelos com mais acertos e maior capacidade de reprodução do mapa convencional de solos. A extrapolação para o município de Cerro Grande do Sul se mostrou eficiente. Ao classificar a aptidão agrícola das terras, a concordância entre o mapa convencional e os mapas preditos foi maior do que a concordância entre os mapas de solos. / In Brazil, the implementation of soil mapping throughout the national territory is a constant demand of research institutions and planning organs, as it is an important tool for rational planning of land occupation. Digital Soil Mapping (DSM) is an alternative to increase the viability of the soil survey because plots the information based on the relief to draw the soil map. This study aims to test methodologies DSM applied to similar landscapes areas. It also aims to reclassify the pedological map generated by DSM to create a new land suitability classes map and compare it with the land suitability classes map generated from conventional maps. The study was conducted in South Sentinel and Cerro Grande do Sul considering the lack of data in that area. The MDS was generated using a global model of decision tree (DT) for the entire area and combined with the use of two predictive models. The use of DSM to land suitability classes map is unknown. Perhaps interpretive maps created from the reclassification of DSM can produce more accurate maps than the predictor model would generate of the pedological map. The use of set models of DT created models with greater hits and higher reproductive capacity of the conventional map. The extrapolation to Cerro Grande do Sul was efficient . The DSM was more efficient to classify land suitability classes than to classify pedological maps, but this system of land sutability needs adjustments to reflect the local reality.
|
84 |
[es] COMBINACIÓN DE REDES NEURALES MLP EN PROBLEMAS DE CLASIFICACIÓN / [pt] COMBINAÇÃO DE REDES NEURAIS MLP EM PROBLEMAS DE CLASSIFICAÇÃO / [en] COMBINING MLP NEURAL NETS FOR CLASSIFICATION28 August 2001 (has links)
[pt] Esta dissertação investigou a criação de comitês de
classificadores baseados em Redes Neurais Multilayer
Perceptron (Redes MLP, abreviadamente). Isso foi feito em
dois passos: primeiro, aplicando-se procedimentos para
criação de redes complementares, i.e, redes individualmente
eficazes mas que cometem erros distintos; segundo, testando-
se sobre essas redes alguns dos principais métodos de
combinação disponíveis. Dentre os procedimentos para
criação de redes complementares, foi dado enfoque para os
baseados em alteração do conjunto de treinamento. Os
métodos Bootstrap e Arc-x4 foram escolhidos para serem
utilizados no estudo de casos, juntamente com o método RDP
(Replicação Dirigida de Padrões). No que diz respeito aos
métodos de combinação disponíveis, foi dada particular
atenção ao método de combinação por integrais nebulosas.
Além deste método, implementou-se combinação por média,
votação por pluralidade e Borda count. As aplicações
escolhidas para teste envolveram duas vertentes importantes
na área de visão computacional - Classificação de
Coberturas de Solo por Imagens de Satélite e Reconhecimento
de Expressões Faciais. Embora ambas pertençam à mesma área
de conhecimento, foram escolhidas de modo a representar
níveis de dificuldade diferentes como tarefas de
classificação - enquanto a primeira contou com um grande
número de padrões disponíveis, a segunda foi
comparativamente limitada nesse sentido. Como resultado
final, comprovou-se a viabilidade da utilização de comitês
em problemas de classificação, mesmo com as possíveis
variações de desempenho relacionadas com a complexidade
desses problemas. O método de combinação baseado em
integrais nebulosas mostrou-se particularmente eficiente
quando associado ao procedimento RDP para formação das redes
comissionadas, mas nem sempre foi satisfatório. Considerado
individualmente, o RDP tem a limitação de criar, no máximo,
tantas redes quanto forem as classes consideradas em um
problema; porém, quando este número de redes foi
considerado como base de comparação, o RDP se mostrou,
na média de todos os métodos de combinação testados, mais
eficaz que os procedimentos Bootstrap e Arc-x4. Por outro
lado, tanto o Bootstrap quanto o Arc-x4 têm a importante
vantagem de permitirem a formação de um número crescente de
membros, o que quase sempre acarretou em melhorias de
desempenho global em relação ao RDP. / [en] The present dissertation investigated the creation of
classifier committees based on Multilayer Perceptron Neural
Networks (MLP Networks, for short). This was done in two
parts: first, by applying procedures for creating
complementary networks, i.e., networks that are individually
accurate but cause distinct misclassifications; second, by
assessing different combining methods to these network`s
outputs. Among the procedures for creating committees
members, the main focus was set to the ones based on
changes to the training set . Bootstrap and Arc-x4 were
chosen to be used at the experiments, along with the RDP
procedure (translated as Driven Pattern Replication). With
respect to the available combining methods, special
attention was paid to fuzzy integrals combination. Average
combination, plurality voting and Borda count were also
implemented. The chosen experimental applications included
interesting branches from computer vision: Land Cover
Classification from Satellite Images and Facial Expression
Recognition. These applications were specially interesting,
in the sense they represent two different levels of
difficulty as classification tasks - while the first had a
great number of available patterns, the second was
comparatively limited in this way. This work proved the
viability of using committees in classification problems,
despite the small performance fluctuations related to these
problems complexity. The fuzzy integrals method has shown
to be particularly interesting when coupled with the RDP
procedure for committee creation, but was not always
satisfactory. Taken alone, the RDP has the limitation of
creating, at most, as many networks as there are classes to
be considered at the problem at hand; however, when
this number of networks was considered as the basis for
comparison, this procedure outperformed, taking into
account average combining results, both Bootstrap and Arc-
x4. On the other hand, these later procedures have the
important advantage of allowing the creation of an
increasing number of committee members, what almost always
increased global performance in comparison to RDP. / [es] Esta disertación investigó la creación de comités de
clasificadores basados en Redes Neurales Multilayer
Perceptron (Redes MLP, abreviadamente). Esto fue ejecutado
en dos pasos: primeiro, aplicando procedimentos para la
creación de redes complementares, esto es, redes que
individualmente son eficaces pero que cometen erros
diferentes; segundo, probando sobre esas redes, algunos de
los principales métodos de combinación disponibles. Dentro
de los procedimentos para la creación de redes
complementares, se eligieron los basados en alteración del
conjunto de entrenamiento. Los métodos Bootstrap y Arc-x4
fueron seleccionados para utilizarlos em el estudio de
casos, conjuntamente con el método RDP (Replicación
Dirigida de Padrones). Con respecto a los métodos de
combinación disponibles, se le dió particular atención al
método de combinación por integrales nebulosas. Además de
este método, se implementaron: combinación por media,
votación por pluralidad y Borda cont. Las aplicaciones
seleccionadas para pruebas consideran dos vertientes
importantes en la área de visión computacional -
Clasificación de Coberturas de Suelo por Imágenes de
Shastalite y Reconocimiento de Expresiones Faciales. Aunque
ambas pertencen a la misma área de conocimento, fueron
seleccionadas de modo con diferentes níveles de dificuldad
como tareas de clasificación - Mientras la primera contó
con un gran número de padrones disponibles, la segunda fue
comparativamente limitada em ese sentido. Como resultado
final, se comprobó la viabilidad de la utilización de
comités en problemas de clasificación, incluso con las
posibles variaciones de desempeño relacionadas con la
complejidad de esos problemas. El método de combinación
basado en integrales nebulosas se mostró particularmente
eficiente asociado al procedimiento RDP para formación de
las redes comisionadas, pero no siempre fue satisfactorio.
Considerado individualmente, el RDP tiene la limitación de
crear, como máximo, tantas redes como clases consideradas
en un problema; sin embargo, cuando el número de redes fue
considerado como base de comparación, el RDP se mostró más
eficaz, en la media de todos los métodos de combinación,
que los procedimentos Bootstrap y Arc-x4. Por otro lado,
tanto el Bootstrap como el Arc-x4 tiene la importante
ventaja de permitir la formación de un número cresciente de
miembros, lo que generalmente mejora el desempeño global en
relación al RDP.
|
85 |
[en] AUTOMATIC SYNTHESIS OF FUZZY INFERENCE SYSTEMS FOR CLASSIFICATION / [pt] SÍNTESE AUTOMÁTICA DE SISTEMAS DE INFERÊNCIA FUZZY PARA CLASSIFICAÇÃOJORGE SALVADOR PAREDES MERINO 25 July 2016 (has links)
[pt] Hoje em dia, grande parte do conhecimento acumulado está armazenado
em forma de dados. Para muitos problemas de classificação,
tenta-se aprender a relação entre um conjunto de variáveis (atributos) e
uma variável alvo de interesse. Dentre as ferramentas capazes de atuar como
modelos representativos de sistemas reais, os Sistemas de Inferência Fuzzy
são considerados excelentes com respeito à representação do conhecimento
de forma compreensível, por serem baseados em regras linguísticas. Este
quesito de interpretabilidade linguística é relevante em várias aplicações em
que não se deseja apenas um modelo do tipo caixa preta, que, por mais
precisão que proporcione, não fornece uma explicação de como os resultados
são obtidos. Esta dissertação aborda o desenvolvimento de um Sistema
de Inferência Fuzzy de forma automática, buscando uma base de regras que
valorize a interpretabilidade linguística e que, ao mesmo tempo, forneça uma
boa acurácia. Para tanto, é proposto o modelo AutoFIS-Class, um método
automático para a geração de Sistemas de Inferência Fuzzy para problemas
de classificação. As características do modelo são: (i) geração de premissas
que garantam critérios mínimos de qualidade, (ii) associação de cada premissa
a um termo consequente mais compatível e (iii) agregação de regras
de uma mesma classe por meio de operadores que ponderem a influência
de cada regra. O modelo proposto é avaliado em 45 bases de dados benchmark
e seus resultados são comparados com modelos da literatura baseados
em Algoritmos Evolucionários. Os resultados comprovam que o Sistema de
Inferência gerado é competitivo, apresentando uma boa acurácia com um
baixo número de regras. / [en] Nowadays, much of the accumulated knowledge is stored as data. In
many classification problems the relationship between a set of variables
(attributes) and a target variable of interest must be learned. Among
the tools capable of modeling real systems, Fuzzy Inference Systems are
considered excellent with respect to the knowledge representation in a
comprehensible way, as they are based on inference rules. This is relevant
in applications where a black box model does not suffice. This model
may attain good accuracy, but does not explain how results are obtained.
This dissertation presents the development of a Fuzzy Inference System
in an automatic manner, where the rule base should favour linguistic
interpretability and at the same time provide good accuracy. In this sense,
this work proposes the AutoFIS-Class model, an automatic method for
generating Fuzzy Inference Systems for classification problems. Its main
features are: (i) generation of premises to ensure minimum, quality criteria,
(ii) association of each rule premise to the most compatible consequent
term; and (iii) aggregation of rules for each class through operator that
weigh the relevance of each rule. The proposed model was evaluated for
45 datasets and their results were compared to existing models based on
Evolutionary Algorithms. Results show that the proposed Fuzzy Inference
System is competitive, presenting good accuracy with a low number of rules.
|
86 |
[en] PERSISTENCE OF STRAINING IN THE FOUR-ROLL MILL FLOW / [pt] PERSISTÊNCIA DE DEFORMAÇÃO NO ESCOAMENTO NO FOUR-ROLL MILLJOAO PEDRO BEZERRA DA CUNHA 15 July 2021 (has links)
[pt] A motivação deste trabalho consiste no uso do four-roll mill para aumentar
a separação de fases de emulsões água em óleo (A/O) presente no
processamento primário da indústria de petróleo. A partir da conservação de
massa e momento, a fase contínua foi modelada como escoamento incompressível,
bi-dimensional e isotérmico. Simulações numéricas utilizando o método
de elementos finitos foram implementadas para revelar a influência das diversas
configurações de escoamento no comportamento mecânico do material. A
partir dos resultados obtidos, a habitual forma de classificar o escoamento no
four-roll mill de acordo com a literatura se demonstrou ineficiente. Este trabalho
sugere classificações locais de escoamento a cada posição dependendo se
a mesma está ocupada pela fase contínua ou dispersa da emulsão. O efeito da
fase dispersa é descrito via pós-processamento. Microelementos no formato de vetores foram inseridos no domínio e investigou-se suas deformações e trajetórias. Consequentemente, analisou-se a deformação de gotas e a sua respectiva
influência na instabilidade da emulsão. / [en] The motivation of this work consists in the use of four-roll mill in order
to increase the phase separation of water-in-oil emulsions (W/O) present in
the primary process of oil industry. With mass and momentum conservation,
the continuous phase is modeled by an incompressible, bi-dimensional and
isothermal flow. Numerical simulations employing the finite element method
were implemented to reveal the influence of the several flow configurations
in the material mechanical behavior. From the obtained results, the standard
way of classifying the flow in the four-roll mill according to the literature was
proved inefficient. This work suggests local flow classifications for each position depending if it is occupied by the continuous or dispersed phase. The effect of the dispersed phase was described by a post-processing scheme. Microelements in shape of vectors were inserted in the domain and their deformations and pathlines were investigated. Thus, the deformation of droplets and their respective influences in the emulsion instability were analyzed.
|
87 |
[pt] APRENDIZADO COM RESTRIÇÃO DE TEMPO: PROBLEMAS DE CLASSIFICAÇÃO / [en] TIME CONSTRAINED LEARNING: CLASSIFICATION PROBLEMSFRANCISCO SERGIO DE FREITAS FILHO 04 September 2023 (has links)
[pt] Com a crescente quantidade de dados sendo gerados e coletados, torna-se
mais comum cenários em que se dispõe de dados rotulados em larga escala, mas
com recursos computacionais limitados, de modo que não seja possível treinar
modelos preditivos utilizando todas as amostras disponíveis. Diante dessa
realidade, adotamos o paradigma de Machine Teaching como uma alternativa
para obter modelos eficazes utilizando um subconjunto representativo dos
dados disponíveis.
Inicialmente, consideramos um problema central da área de Machine
Teaching que consiste em encontrar o menor conjunto de amostras necessário
para obter uma dada hipótese alvo h(asterisco). Adotamos o modelo de ensino black-box
learner introduzido em (DASGUPTA et al., 2019), em que o ensino é feito
interativamente sem qualquer conhecimento sobre o algoritmo do learner e
sua classe de hipóteses, exceto que ela contém a hipótese alvo h(asterisco). Refinamos
alguns resultados existentes para esse modelo e estudamos variantes dele. Em
particular, estendemos um resultado de (DASGUPTA et al., 2019) para o
cenário mais realista em que h(asterisco) pode não estar contido na classe de hipóteses
do learner e, portanto, o objetivo do teacher é fazer o learner convergir para
a melhor aproximação disponível de h(asterisco). Também consideramos o cenário com
black-box learners não adversários e mostramos que podemos obter melhores
resultados para o tipo de learner que se move para a próxima hipótese de
maneira suave, preferindo hipóteses que são mais próximas da hipótese atual.
Em seguida, definimos e abordamos o problema de Aprendizado com
Restrição de Tempo considerando um cenário em que temos um enorme
conjunto de dados e um limite de tempo para treinar um dado learner usando
esse conjunto. Propomos o método TCT, um algoritmo para essa tarefa,
desenvolvido com base nos princípios de Machine Teaching. Apresentamos um
estudo experimental envolvendo 5 diferentes learners e 20 datasets no qual
mostramos que TCT supera métodos alternativos considerados. Finalmente,
provamos garantias de aproximação para uma versão simplificada do TCT. / [en] With the growing amount of data being generated and collected, it
becomes increasingly common to have scenarios where there are large-scale
labeled data but limited computational resources, making it impossible to train
predictive models using all available samples. Faced with this reality, we adopt
the Machine Teaching paradigm as an alternative to obtain effective models
using a representative subset of available data.
Initially, we consider a central problem of the Machine Teaching area
which consists of finding the smallest set of samples necessary to obtain a
given target hypothesis h(asterisk). We adopt the black-box learner teaching model
introduced in (DASGUPTA et al., 2019), where teaching is done interactively
without any knowledge about the learner s algorithm and its hypothesis class,
except that it contains the target hypothesis h(asterisk). We refine some existing results
for this model and study its variants. In particular, we extend a result from
(DASGUPTA et al., 2019) to the more realistic scenario where h(asterisk) may not
be contained in the learner s hypothesis class, and therefore, the teacher s
objective is to make the learner converge to the best available approximation
of h(asterisk). We also consider the scenario with non-adversarial black-box learners
and show that we can obtain better results for the type of learner that moves
to the next hypothesis smoothly, preferring hypotheses that are closer to the
current hypothesis.
Next, we address the Time-Constrained Learning problem, considering a
scenario where we have a huge dataset and a time limit to train a given learner
using this dataset. We propose the TCT method, an algorithm for this task,
developed based on Machine Teaching principles. We present an experimental
study involving 5 different learners and 20 datasets in which we show that TCT
outperforms alternative methods considered. Finally, we prove approximation
guarantees for a simplified version of TCT.
|
88 |
[pt] SEGMENTAÇÃO E O MODELO RFM NO VAREJO BRASILEIRO: UMA ANÁLISE COM BASES DE DADOS TRANSACIONAIS DO VAREJO DE VESTUÁRIO / [en] THE RFM MODEL: THE IMPACT OF DATA SCIENCE ON MODEL APPLICABILITY DEVELOPMENT, STRATEGIES AND APPLICATIONS IN THE BRAZILIAN RETAIL MARKETANA CLARA ARAGAO FERNANDES 21 November 2022 (has links)
[pt] A pandemia de Covid-19 alterou o comportamento do consumidor no varejo
a nível mundial. Este trabalho apresenta uma análise longitudinal do
comportamento do consumidor ao longo entre 2018 e 2021, possibilitando, dessa
forma, a comparação entre o comportamento do consumidor pré e pós pandemia de
covid-19 em uma loja do varejo brasileiro. Para realizar essa análise, o modelo RFM
é aplicado a partir de métodos de inteligência artificial para a análise de grandes
volumes de dados transacionais com o objetivo de classificar os clientes de acordo
com os seus comportamentos de consumo. Para o caso apresentado foram
identificados 5 segmentos de consumo distintos e de grande utilidade para a gestão
de CRM da empresa. / [en] The Covid-19 pandemic has changed consumer behavior in retail worldwide.
This work presents a longitudinal analysis of consumer behavior between 2018 and
2021, thus making it possible to compare consumer behavior before and after the
covid-19 pandemic in a Brazilian retail store. To perform this analysis, the RFM
model is applied using artificial intelligence methods to analyze large volumes of
transactional data in order to classify customers according to their consumption
behaviors. For the case presented, 5 distinct and very useful consumer segments
were identified for the company s CRM management.
|
89 |
[en] DECISION DIAGRAMS FOR CLASSIFICATION: NEW CONSTRUCTIVE APPROACHES / [pt] DIAGRAMAS DE DECISÃO PARA CLASSIFICAÇÃO: NOVAS ABORDAGENS CONSTRUTIVASPEDRO SARMENTO BARBOSA MARTINS 16 October 2023 (has links)
[pt] Diagramas de decisão são uma generalização de árvores de decisão, já
propostos como um modelo de aprendizado de máquina para classificação supervisionada mas não largamente adotados. A razão é a dificuldade em treinar
o modelo, já que o requerimento de decidir splits (partições) e merges (uniões
de nós) em conjunto pode levar a problemas difíceis de otimização combinatória. Um diagrama de decisão tem importantes vantagens sobre árvores de
decisão, pois melhor expressa conceitos binários disjuntos, evitando o problema
de duplicação de subárvores e, portanto, apresentando menos fragmentação em
nós internos. Por esse motivo, desenvolver algoritmos efetivos de construção é
um esforço importante. Nesse contexto, o algoritmo Optimal Decision Diagram
(ODD) foi recentemente proposto, formulando a construção do diagrama com
programação inteira mista (MILP na sigla em inglês), com um warm start proveniente de uma heurística construtiva gulosa. Experimentos mostraram que
essa heurística poderia ser aperfeiçoada, a fim de encontrar soluções próximas
do ótimo de maneira mais efetiva, e por sua vez prover um warm start melhor.
Nesse estudo, reportamos aperfeiçoamentos para essa heurística construtiva,
sendo eles a randomização das decisões de split, a poda de fluxos puros (ou
seja, fluxos de exemplos pertencentes a uma única classe), e aplicando uma
poda bottom-up (de baixo para cima), que considera a complexidade do modelo além da sua acurácia. Todos os aperfeiçoamentos propostos têm efeitos
positivos na acurácia e generalização, assim como no valor objetivo do algoritmo ODD. A poda bottom-up, em especial, tem impacto significativo no valor
objetivo, e portanto na capacidade da formulação MILP de encontrar soluções
ótimas. Ademais, provemos experimentos sobre a expressividade de diagramas
de decisão em comparação a árvores no contexto de pequenas funções booleanas em Forma Normal Disjuntiva (DNF na sigla em inglês), assim como uma
aplicação web para a exploração visual dos métodos construtivos propostos. / [en] Decision diagrams are a generalization of decision trees. They have
been repeatedly proposed as a supervised classification model for machine
learning but have not been widely adopted. The reason appears to be the
difficulty of training the model, as the requirement of deciding splits and
merging nodes can lead to difficult combinatorial optimization problems.
A decision diagram has marked advantages over decision trees because it
better models disjoint binary concepts, avoiding the replication of subtrees
and thus has less sample fragmentation in internal nodes. Because of this,
devising an effective construction algorithm is important. In this context, the
Optimal Decision Diagram (ODD) algorithm was recently proposed, which
formulates the problem of building a diagram as a mixed-integer linear program
(MILP), with a warm start provided by a greedy constructive heuristic. Initial
experiments have shown that this heuristic can be improved upon, in order
to find close-to-optimal solutions more effectively and in turn provide the
MILP with a better warm start. In this study, we report improvements to this
constructive heuristic, by randomizing the split decisions, pruning pure flows
(i.e. flows with samples from a single class), and applying bottom-up pruning,
which considers the complexity of the model in addition to its accuracy. All
proposed improvements have positive effects on accuracy and generalization,
as well as the objective value of the ODD algorithm. The bottom-up pruning
strategy, in particular, has a substantial impact on the objective value, and
thus on the ability of the MILP solver to find optimal solutions. In addition, we
provide experiments on the expressiveness of decision diagrams when compared
to trees in the context of small boolean functions in Disjoint Normal Form
(DNF), as well as a web application for the visual exploration of the proposed
constructive approaches.
|
90 |
[pt] CLASSIFICAÇÃO DE GLIOMAS UTILIZANDO ÍNDICES DE BIODIVERSIDADE E DE DIVERSIDADE FILOGENÉTICA EM IMAGENS POR RESSONÂNCIA MAGNÉTICA ATRAVÉS DE UMA ABORDAGEM RADIOMICS / [en] RADIMOCS ANALYSIS FOR GLIOMA GRADING USING BIODIVERSITY AND PHYLOGENETIC DIVERSITY INDICES ON MULTI-MODAL MAGNETIC RESONANCE IMAGINGFERNANDA DA CUNHA DUARTE 26 March 2020 (has links)
[pt] Gliomas estão entre os tumores cerebrais malignos mais comuns. Eles
podem ser classificados entre gliomas de baixo e alto grau e sua identificação
precoce é fundamental para o direcionamento do tratamento aplicado.
Utilizando uma abordagem radiomics, o presente trabalho propõe o uso de
índices de biodiversidade e de diversidade filogenética, definidos no campo
da biologia, no problema de classificação de gliomas. O método proposto
apresentou resultados promissores, com AUC-ROC (area under the ROC
curve), acurácia, sensibilidade e especificidade de 0,951, 0,930, 0,967 e 0,827,
respectivamente. / [en] Gliomas are among the most common malignant brain tumors. They
can be classified into low-grade and high-grade gliomas and their early
identification is crucial for treatment direction. Using a radiomics approach,
the present work proposes the use of biodiversity and phylogenetic diversity
biology indices to handle the glioma classification problem. The proposed
method presented promising results, with AUC-ROC (area under the ROC
curve), accuracy, sensitivity and specificity of 0,951, 0,930, 0,967 and 0,827,
respectively.
|
Page generated in 0.0529 seconds