Spelling suggestions: "subject:"classifiers"" "subject:"lassifiers""
181 |
Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New ZealandSusnjak, Teo January 2009 (has links)
This thesis seeks to address current problems encountered when training classifiers within the framework of cascades of boosted ensembles (CoBE). At present, a signifi- cant challenge facing this framework are inordinate classifier training runtimes. In some cases, it can take days or weeks (Viola and Jones, 2004; Verschae et al., 2008) to train a classifier. The protracted training runtimes are an obstacle to the wider use of this framework (Brubaker et al., 2006). They also hinder the process of producing effective object detection applications and make the testing of new theories and algorithms, as well as verifications of others research, a considerable challenge (McCane and Novins, 2003). An additional shortcoming of the CoBE framework is its limited ability to train clas- sifiers incrementally. Presently, the most reliable method of integrating new dataset in- formation into an existing classifier, is to re-train a classifier from beginning using the combined new and old datasets. This process is inefficient. It lacks scalability and dis- cards valuable information learned in previous training. To deal with these challenges, this thesis extends on the research by Barczak et al. (2008), and presents alternative CoBE frameworks for training classifiers. The alterna- tive frameworks reduce training runtimes by an order of magnitude over common CoBE frameworks and introduce additional tractability to the process. They achieve this, while preserving the generalization ability of their classifiers. This research also introduces a new framework for incrementally training CoBE clas- sifiers and shows how this can be done without re-training classifiers from beginning. However, the incremental framework for CoBEs has some limitations. Although it is able to improve the positive detection rates of existing classifiers, currently it is unable to lower their false detection rates.
|
182 |
Detecção de falhas em circuitos eletrônicos lineares baseados em classificadores de classe única. / Fault detection in electronics linear circuits based in one class classifiers.Alvaro Cesar Otoni Lombardi 05 August 2011 (has links)
Esse trabalho está baseado na investigação dos detectores de falhas aplicando classificadores de classe única. As falhas a serem detectadas são relativas ao estado de funcionamento de cada componente do circuito, especificamente de suas tolerâncias (falha paramétrica). Usando a função de transferência de cada um dos circuitos são gerados e analisados os sinais de saída com os componentes dentro e fora da tolerância. Uma função degrau é aplicada à entrada do circuito, o sinal de saída desse circuito passa por uma função diferenciadora e um filtro. O sinal de saída do filtro passa por um processo de redução de atributos e finalmente, o sinal segue simultaneamente para os classificadores multiclasse e classe única. Na análise são empregados ferramentas de reconhecimento de padrões e de classificação de classe única. Os classficadores multiclasse são capazes de classificar o sinal de saída do circuito em uma das classes de falha para o qual foram treinados. Eles apresentam um bom desempenho quando as classes de falha não possuem superposição e quando eles não são apresentados a classes de falhas para os quais não foram treinados. Comitê de classificadores de classe única podem classificar o sinal de saída em uma ou mais classes de falha e também podem classificá-lo em nenhuma classe. Eles apresentam desempenho comparável ao classificador multiclasse, mas também são capazes detectar casos de sobreposição de classes de falhas e indicar situações de falhas para os quais não foram treinados (falhas desconhecidas). Os resultados obtidos nesse trabalho mostraram que os classificadores de classe única, além de ser compatível com o desempenho do classificador multiclasse quando não há sobreposição, também detectou todas as sobreposições existentes sugerindo as possíveis falhas. / This work deals with the application of one class classifiers in fault detection. The faults to be detected are related parametric faults. The transfer function of each circuit was generated and the outputs signals with the components in and out of tolerance were analyzed. Pattern recognition and one class classifications tools are employed to perform the analysis. The multiclass classifiers are able to classify the circuit output signal in one of the trained classes. They present a good performance when the fault classes do not overlap or when they are not presented to fault classes that were not presented in the training. The one class classifier committee may classify the output signal in one or more fault classes and may also classify them in none of the trained class faults. They present comparable performance to multiclass classifiers, but also are able to detect overlapping fault classes and show fault situations that were no present in the training (unknown faults).
|
183 |
[en] MACHINE LEARNING FOR SENTIMENT CLASSIFICATION / [pt] APRENDIZADO DE MÁQUINA PARA O PROBLEMA DE SENTIMENT CLASSIFICATIONPEDRO OGURI 18 May 2007 (has links)
[pt] Sentiment Analysis é um problema de categorização de texto
no qual deseja-se identificar opiniões favoráveis e
desfavoráveis com relação a um tópico.
Um exemplo destes tópicos de interesse são organizações e
seus produtos. Neste problema, documentos são
classificados pelo sentimento, conotação,
atitudes e opiniões ao invés de se restringir aos fatos
descritos neste. O principal desafio em Sentiment
Classification é identificar como sentimentos são
expressados em textos e se tais sentimentos indicam uma
opinião positiva (favorável) ou negativa (desfavorável)
com relação a um tópico. Devido ao crescente volume de
dados disponível na Web, onde todos tendem
a ser geradores de conteúdo e expressarem opiniões sobre
os mais variados assuntos, técnicas de Aprendizado de
Máquina vem se tornando cada vez mais atraentes.
Nesta dissertação investigamos métodos de Aprendizado de
Máquina para Sentiment Analysis. Apresentamos alguns
modelos de representação de documentos como saco de
palavras e N-grama. Testamos os classificadores
SVM (Máquina de Vetores Suporte) e Naive Bayes com
diferentes modelos de representação textual e comparamos
seus desempenhos. / [en] Sentiment Analysis is a text categorization problem in
which we want to
identify favorable and unfavorable opinions towards a
given topic. Examples
of such topics are organizations and its products. In this
problem, docu-
ments are classifed according to their sentiment,
connotation, attitudes and
opinions instead of being limited to the facts described
in it.
The main challenge in Sentiment Classification is
identifying how sentiments
are expressed in texts and whether they indicate a
positive (favorable) or
negative (unfavorable) opinion towards a topic. Due to the
growing volume
of information available online in an environment where we
all tend to be
content generators and express opinions on a variety of
subjects, Machine
Learning techniques have become more and more attractive.
In this dissertation, we investigate Machine Learning
methods applied to
Sentiment Analysis. We present document representation
models such as
bag-of-words and N-grams.We compare the performance of the
Naive Bayes
and the Support Vector Machine classifiers for each
proposed model
|
184 |
Detecção de falhas em circuitos eletrônicos lineares baseados em classificadores de classe única. / Fault detection in electronics linear circuits based in one class classifiers.Alvaro Cesar Otoni Lombardi 05 August 2011 (has links)
Esse trabalho está baseado na investigação dos detectores de falhas aplicando classificadores de classe única. As falhas a serem detectadas são relativas ao estado de funcionamento de cada componente do circuito, especificamente de suas tolerâncias (falha paramétrica). Usando a função de transferência de cada um dos circuitos são gerados e analisados os sinais de saída com os componentes dentro e fora da tolerância. Uma função degrau é aplicada à entrada do circuito, o sinal de saída desse circuito passa por uma função diferenciadora e um filtro. O sinal de saída do filtro passa por um processo de redução de atributos e finalmente, o sinal segue simultaneamente para os classificadores multiclasse e classe única. Na análise são empregados ferramentas de reconhecimento de padrões e de classificação de classe única. Os classficadores multiclasse são capazes de classificar o sinal de saída do circuito em uma das classes de falha para o qual foram treinados. Eles apresentam um bom desempenho quando as classes de falha não possuem superposição e quando eles não são apresentados a classes de falhas para os quais não foram treinados. Comitê de classificadores de classe única podem classificar o sinal de saída em uma ou mais classes de falha e também podem classificá-lo em nenhuma classe. Eles apresentam desempenho comparável ao classificador multiclasse, mas também são capazes detectar casos de sobreposição de classes de falhas e indicar situações de falhas para os quais não foram treinados (falhas desconhecidas). Os resultados obtidos nesse trabalho mostraram que os classificadores de classe única, além de ser compatível com o desempenho do classificador multiclasse quando não há sobreposição, também detectou todas as sobreposições existentes sugerindo as possíveis falhas. / This work deals with the application of one class classifiers in fault detection. The faults to be detected are related parametric faults. The transfer function of each circuit was generated and the outputs signals with the components in and out of tolerance were analyzed. Pattern recognition and one class classifications tools are employed to perform the analysis. The multiclass classifiers are able to classify the circuit output signal in one of the trained classes. They present a good performance when the fault classes do not overlap or when they are not presented to fault classes that were not presented in the training. The one class classifier committee may classify the output signal in one or more fault classes and may also classify them in none of the trained class faults. They present comparable performance to multiclass classifiers, but also are able to detect overlapping fault classes and show fault situations that were no present in the training (unknown faults).
|
185 |
Aprendiz de descritores de mistura gaussiana / Gaussian mixture descriptors learnerFreitas, Breno Lima de 14 December 2017 (has links)
Submitted by Breno Freitas (brenolimadefreitas@gmail.com) on 2018-01-11T05:18:51Z
No. of bitstreams: 1
tese.pdf: 2292309 bytes, checksum: 6fed87a7d149f4ecf1b124c3dbe48d9e (MD5) / Rejected by Milena Rubi ( ri.bso@ufscar.br), reason: Bom dia Breno!
Além da dissertação, você deve submeter também a carta comprovante devidamente preenchida e assinada pelo orientador.
O modelo da carta encontra-se na página inicial do site do Repositório Institucional.
Att.,
Milena P. Rubi
Bibliotecária
CRB8-6635
Biblioteca Campus Sorocaba
on 2018-01-11T12:06:11Z (GMT) / Submitted by Breno Freitas (brenolimadefreitas@gmail.com) on 2018-01-11T14:51:00Z
No. of bitstreams: 2
tese.pdf: 2292309 bytes, checksum: 6fed87a7d149f4ecf1b124c3dbe48d9e (MD5)
atestado-deposito-assinado.pdf: 159376 bytes, checksum: 4d20d8676988e631bc8b46f7c2224bcb (MD5) / Approved for entry into archive by Milena Rubi ( ri.bso@ufscar.br) on 2018-01-12T10:35:56Z (GMT) No. of bitstreams: 2
tese.pdf: 2292309 bytes, checksum: 6fed87a7d149f4ecf1b124c3dbe48d9e (MD5)
atestado-deposito-assinado.pdf: 159376 bytes, checksum: 4d20d8676988e631bc8b46f7c2224bcb (MD5) / Approved for entry into archive by Milena Rubi ( ri.bso@ufscar.br) on 2018-01-12T10:36:13Z (GMT) No. of bitstreams: 2
tese.pdf: 2292309 bytes, checksum: 6fed87a7d149f4ecf1b124c3dbe48d9e (MD5)
atestado-deposito-assinado.pdf: 159376 bytes, checksum: 4d20d8676988e631bc8b46f7c2224bcb (MD5) / Made available in DSpace on 2018-01-12T10:36:25Z (GMT). No. of bitstreams: 2
tese.pdf: 2292309 bytes, checksum: 6fed87a7d149f4ecf1b124c3dbe48d9e (MD5)
atestado-deposito-assinado.pdf: 159376 bytes, checksum: 4d20d8676988e631bc8b46f7c2224bcb (MD5)
Previous issue date: 2017-12-14 / Não recebi financiamento / For the last decades, many Machine Learning methods have been proposed aiming categorizing data. Given many tentative models, those methods try to find the one that fits the dataset by building a hypothesis that predicts unseen samples reasonably well. One of the main concerns in that regard is selecting a model that performs well in unseen samples not overfitting on the known data. In this work, we introduce a classification method based on the minimum description length principle, which naturally offers a tradeoff between model complexity and data fit. The proposed method is multiclass, online and is generic in the regard of data representation. The experiments conducted in real datasets with many different characteristics, have shown that the proposed method is statiscally equivalent to the other classical baseline methods in the literature in the offline scenario and it performed better than some when tested in an online scenario. Moreover, the method has proven to be robust to overfitting and data normalization which poses great features a classifier must have in order to deal with large, complex and real-world classification problems. / Ao longo das últimas décadas, diversos métodos de aprendizado de máquina vêm sendo propostos com o intuito de classificar dados. Entre os modelos candidatos, procura-se selecionar um que se ajuste bem aos dados de treinamento, criando uma hipótese que faça boas predições em amostras não analisadas anteriormente. Um dos maiores desafios é selecionar um modelo, cuja hipótese não seja sobre-ajustada aos dados conhecidos, sendo genérica o suficiente para boas predições futuras. Neste trabalho, é apresentado um método de classificação baseado no princípio da descrição mais simples que efetua uma troca benéfica entre a complexidade do modelo e o ajuste aos dados. O método proposto é multiclasse, incremental e pode ser usado em dados com atributos categóricos, numéricos e contínuos. Experimentos conduzidos em bases reais de diversas características mostraram que o método proposto é estatisticamente equivalente à métodos clássicos na literatura para o cenário offline e superior a alguns métodos no cenário de aprendizado incremental. Além disso, o método mostrou-se robusto ao sobre-ajustamento e à normalização dos dados, apresentando características benéficas para um método de classificação que pode ser aplicado nos dias atuais.
|
186 |
Aplicando princípios de aprendizado de máquina na construção de um biocurador automático para o Gene Ontology (GO)Amaral, Laurence Rodrigues do 08 October 2013 (has links)
Made available in DSpace on 2016-06-02T19:03:58Z (GMT). No. of bitstreams: 1
6030.pdf: 2345815 bytes, checksum: 385c6d8c1bda1d4afe540c01668338fa (MD5)
Previous issue date: 2013-10-08 / Nowadays, the amount of biological data available by universities, hospitals and research centers has increased exponentially due the use of bioinformatics, with the development of methods and advanced computational tools, and high-throughput techniques. Due to this significant increase in the amount of available data, new strategies for capture, storage and analysis of data are necessary. In this scenario, a new research area is developing, called biocuration. The biocuration is becoming a fundamental part in the biological and biomedical research, and the main function is related with the structuration and organization of the biological information, making it readable and accessible to mens and computers. Seeking to support a fast and reliable understanding of new domains, different initiatives are being proposed, and the Gene Ontology (GO) is one of the main examples. The GO is one the main initiatives in bioinformatics, whose main goal is to standardize the representation of genes and their products, providing interconnections between species and databases. Thus, the main objective of this research is to propose a computational architecture that uses principles of never-ending learning to help biocurators in new GO classifications. Nowadays, this classification task is totally manual. The proposed architecture uses semi-supervised learning combining different classifiers used in the classification of new GO samples. In addition, this research also aims to build high-level knowledge in the form of simple IF-THEN rules and decision trees. The generated knowledge can be used by the GO biocurators in the search for important patterns present in the biological data, revealing concise and relevant information about the application domain. / Nos dias atuais, a quantidade de dados biológicos disponibilizados por universidades, hospitais e centros de pesquisa tem aumentado de forma exponencial, devido ao emprego da bio-informática, através do desenvolvimento de métodos e técnicas computacionais avançados, e de técnicas de high-throughput. Devido a esse significativo aumento na quantidade de dados disponibilizados, gerou-se a necessidade da criação de novas estratégias para captura, armazenamento e principalmente analise desses dados. Devido a esse cenário, um novo campo de trabalho e pesquisa vem surgindo, chamado biocuragem. A biocuragem está se tornando parte fundamental na pesquisa biomédica e biológica, e tem por principal função estruturar e organizar a informação biológica, tornando-a legível e acessível a homens e computadores. Buscando prover um rápido e confiável entendimento de novos domínios, diferentes iniciativas estão sendo propostas, tendo no Gene Ontology (GO) um dos seus principais exemplos. O GO se destaca mundialmente sendo uma das principais iniciativas em bioinformática, cuja principal meta e padronizar a representação dos genes e seus produtos, provendo interconexões entre espécies e bancos de dados. Dessa forma, objetiva-se com essa pesquisa propor uma arquitetura computacional que utiliza princípios de aprendizado de maquina sem-fim para auxiliar biocuradores do GO na tarefa de classificação de novos termos, tarefa essa, totalmente manual. A arquitetura proposta utiliza aprendizado semi-supervisionado combinando diferentes classificadores na rotulação de novas instâncias do GO. Além disso, essa pesquisa também tem por objetivo a construção de conhecimento de alto-nível na forma de simples regras SE-ENTÃO e árvores de decisão. Esse conhecimento gerado pode ser utilizado pelos biocuradores do GO na busca por padrões importantes presentes nos dados biológicos, revelando informações concisas e relevantes sobre o domínio da aplicação.
|
187 |
Análise de técnicas de reconhecimento de padrões para a identificação biométrica de usuários em aplicações WEB Utilizando faces a partir de vídeos /Kami, Guilherme José da Costa. January 2011 (has links)
Orientador: Aparecido Nilceu Marana / Banca: Hélio Pedrini / Banca: Aledir Silveira Pereira / Resumo: As técnicas para identificação biométrica têm evoluído cada vez mais devido à necessidade que os seres humanos têm de identificar as pessoas em tempo real e de forma precisa para permitir o acesso a determinados recursos, como por exemplo, as aplicações e serviços WEB. O reconhecimento facial é uma técnica biométrica que apresenta várias vantagens em relação às demais, tais como: uso de equipamentos simples e baratos para a obtenção das amostras e a possibilidade de se realizar o reconhecimento em sigilo e à distância. O reconhecimento de faces a partir de vídeo é uma tendência recente na área de Biometria. Esta dissertação tem por objetivo principal comparar diferentes técnicas de reconhecimento facial a partir de vídeo para determinar as que apresentam um melhor compromisso entre tempo de processamento e precisão. Outro objetivo é a incorporação dessas melhores técnicas no sistema de autenticação biométrica em ambientes de E-Learning, proposto em um trabalho anterior. Foi comparado o classificador vizinho mais próximo usando as medidas de distância Euclidiana e Mahalanobis com os seguintes classificadores: Redes Neurais MLP e SOM, K Vizinhos mais Próximos, Classificador Bayesiano, Máquinas de Vetores de Suporte (SVM) e Floresta de Caminhos Ótimos (OPF). Também foi avaliada a técnica de Modelos Ocultos de Markov (HMM). Nos experimentos realizados com a base Recogna Video Database, criada especialmente para uso neste trabalho, e Honda/UCSD Video Database, os classificadores apresentaram os melhores resultados em termos de precisão, com destaque para o classificador SVM da biblioteca SVM Torch. A técnica HMM, que incorpora informações temporais, apresentou resultados melhores do que as funções de distância, em termos de precisão, mas inferiores aos classificadores / Abstract: The biometric identification techniques have evolved increasingly due to the need that humans have to identify people in real time to allow access to certain resources, such as applications and Web services. Facial recognition is a biometric technique that has several advantages over others. Some of these advantages are the use of simple and cheap equipment to obtain the samples and the ability to perform the recognition in covert mode. The face recognition from video is a recent approach in the area of Biometrics. The work in this dissertation aims at comparing different techniques for face recognition from video in order to find the best rates on processing time and accuracy. Another goal is the incorporation of these techniques in the biometric authentication system for E-Learning environments, proposed in an earlier work. We have compared the nearest neighbor classifier using the Euclidean and Mahalanobis distance measures with some other classifiers, such as neural networks (MLP and SOM), k-nearest neighbor, Bayesian classifier, Support Vector Machines (SVM), and Optimum Path Forest (OPF). We have also evaluated the Hidden Markov Model (HMM) approach, as a way of using the temporal information. In the experiments with Recogna Video Database, created especially for this study, and Honda/UCSD Video Database, the classifiers obtained the best accuracy, especially the SVM classifier from the SVM Torch library. HMM, which takes into account temporal information, presented better performance than the distance metrics, but worse than the classifiers / Mestre
|
188 |
Classifica??o de imagens de ambientes coralinos: uma abordagem empregando uma combina??o de classificadores e m?quina de vetor de suporteHenriques, Ant?nio de P?dua de Miranda 08 August 2008 (has links)
Made available in DSpace on 2014-12-17T14:54:48Z (GMT). No. of bitstreams: 1
AntonioPMH.pdf: 3481703 bytes, checksum: 60ec6cc8df48e68b6c13c12104d289d6 (MD5)
Previous issue date: 2008-08-08 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support
Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction
or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column / A utiliza??o de mapas, derivados da classifica??o de imagens de sensores remotos orbitais, tornou-se de fundamental import?ncia para viabilizar a??es de conserva??o e monitoramento de recifes de corais. Entretanto, a acur?cia atingida no mapeamento dessas ?reas ? limitada pelo efeito da varia??o da coluna d ?gua, que degrada o sinal recebido pelo sensor orbital e introduz erros no resultado final do processo de classifica??o. A limitada capacidade dos m?todos tradicionais, baseados em t?cnicas estat?sticas convencionais, para resolver este tipo de problema determinou a investiga??o de uma estrat?gia ligada ? ?rea da Intelig?ncia Computacional. Neste trabalho foi constru?do um conjunto de classificadores baseados em M?quinas de Vetor de Suporte e classificador de Dist?ncia M?nima, com o objetivo de classificar imagens de sensoriamento remoto de ecossistema de recifes de corais. O sistema ? composto por tr?s est?gios, atrav?s dos quais acontece o refinamento progressivo do processo de
classifica??o. Os padr?es que receberam uma classifica??o amb?gua em uma determinada etapa do processo s?o reavaliados na etapa posterior. A predi??o n?o amb?gua para todos os dados aconteceu atrav?s da redu??o ou elimina??o dos falsos positivos. As imagens foram classificadas em cinco tipos de fundos: ?guas profundas, corais submersos, corais intermar?s, algas e fundo arenoso. A melhor acur?cia geral (89%) foi obtida quando foram utilizadas M?quinas de Vetor de Suporte com kernel polinomial. A acur?cia das imagens classificadas foi comparada, atrav?s da utiliza??o de matriz de erro, aos resultados alcan?ados pela aplica??o de outros m?todos de classifica??o baseados em um ?nico classificador (redes neurais e o algoritmo k-means). Ao final, a compara??o dos resultados alcan?ados demonstrou o potencial do conjunto de classificadores como instrumento de classifica??o de imagens de ?reas submersas, sujeitas aos ru?dos provocados pelos efeitos atmosf?ricos e da coluna d ?gua
|
189 |
Abordagens para combinar classificadores e agrupadores em problemas de classificação / Approaches for combining classifiers and clusterers in classification problemsLuiz Fernando Sommaggio Coletta 23 November 2015 (has links)
Modelos para aprendizado não supervisionado podem fornecer restrições complementares úteis para melhorar a capacidade de generalização de classificadores. Baseando-se nessa premissa, um algoritmo existente, denominado de C3E (Consensus between Classification and Clustering Ensembles), recebe como entradas estimativas de distribuições de probabilidades de classes para objetos de um conjunto alvo, bem como uma matriz de similaridades entre esses objetos. Tal matriz é tipicamente construída por agregadores de agrupadores de dados, enquanto que as distribuições de probabilidades de classes são obtidas por um agregador de classificadores induzidos por um conjunto de treinamento. Como resultado, o C3E fornece estimativas refinadas das distribuições de probabilidades de classes como uma forma de consenso entre classificadores e agrupadores. A ideia subjacente é de que objetos similares são mais propensos a compartilharem o mesmo rótulo de classe. Nesta tese, uma versão mais simples do algoritmo C3E, baseada em uma função de perda quadrática (C3E-SL), foi investigada em uma abordagem que permitiu a estimação automática (a partir dos dados) de seus parâmetros críticos. Tal abordagem faz uso de um nova estratégia evolutiva concebida especialmente para tornar o C3E-SL mais prático e flexível, abrindo caminho para que variantes do algoritmo pudessem ser desenvolvidas. Em particular, para lidar com a escassez de dados rotulados, um novo algoritmo que realiza aprendizado semissupervisionado foi proposto. Seu mecanismo explora estruturas intrínsecas dos dados a partir do C3E-SL em um procedimento de autotreinamento (self-training). Esta noção também inspirou a concepção de um outro algoritmo baseado em aprendizado ativo (active learning), o qual é capaz de se autoadaptar para aprender novas classes que possam surgir durante a predição de novos dados. Uma extensa análise experimental, focada em problemas do mundo real, mostrou que os algoritmos propostos são bastante úteis e promissores. A combinação de classificadores e agrupadores resultou em modelos de classificação com grande potencial prático e que são menos dependentes do usuário ou do especialista de domínio. Os resultados alcançados foram tipicamente melhores em comparação com os obtidos por classificadores tradicionalmente usados. / Unsupervised learning models can provide a variety of supplementary constraints to improve the generalization capability of classifiers. Based on this assumption, an existing algorithm, named C3E (from Consensus between Classification and Clustering Ensembles), receives as inputs class probability distribution estimates for objects in a target set as well as a similarity matrix. Such a similarity matrix is typically built from clusterers induced on the target set, whereas the class probability distributions are obtained by an ensemble of classifiers induced from a training set. As a result, C3E provides refined estimates of the class probability distributions, from the consensus between classifiers and clusterers. The underlying idea is that similar new objects in the target set are more likely to share the same class label. In this thesis, a simpler version of the C3E algorithm, based on a Squared Loss function (C3E-SL), was investigated from an approach that enables the automatic estimation (from data) of its critical parameters. This approach uses a new evolutionary strategy designed to make C3E-SL more practical and flexible, making room for the development of variants of the algorithm. To address the scarcity of labeled data, a new algorithm that performs semi-supervised learning was proposed. Its mechanism exploits the intrinsic structure of the data by using the C3E-SL algorithm in a self-training procedure. Such a notion inspired the development of another algorithm based on active learning, which is able to self-adapt to learn new classes that may emerge when classifying new data. An extensive experimental analysis, focused on real-world problems, showed that the proposed algorithms are quite useful and promising. The combination of supervised and unsupervised learning yielded classifiers of great practical value and that are less dependent on user-defined parameters. The achieved results were typically better than those obtained by traditional classifiers.
|
190 |
Segmentação de imagens 3D utilizando combinação de imagens 2DARAÚJO, Caio Fernandes 12 August 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-08-30T18:18:41Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertacao Caio Fernandes Araujo Versão Biblioteca.pdf: 4719896 bytes, checksum: 223db1c4382e6f970dc2cd659978ab60 (MD5) / Made available in DSpace on 2017-08-30T18:18:42Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertacao Caio Fernandes Araujo Versão Biblioteca.pdf: 4719896 bytes, checksum: 223db1c4382e6f970dc2cd659978ab60 (MD5)
Previous issue date: 2016-08-12 / CAPES / Segmentar imagens de maneira automática é um grande desafio. Apesar do ser humano
conseguir fazer essa distinção, em muitos casos, para um computador essa divisão pode não
ser tão trivial. Vários aspectos têm de ser levados em consideração, que podem incluir cor,
posição, vizinhanças, textura, entre outros. Esse desafio aumenta quando se passa a utilizar
imagens médicas, como as ressonâncias magnéticas, pois essas, além de possuírem diferentes
formatos dos órgãos em diferentes pessoas, possuem áreas em que a variação da intensidade
dos pixels se mostra bastante sutil entre os vizinhos, o que dificulta a segmentação
automática. Além disso, a variação citada não permite que haja um formato pré-definido em
vários casos, pois as diferenças internas nos corpos dos pacientes, especialmente os que
possuem alguma patologia, podem ser grandes demais para que se haja uma generalização.
Mas justamente por esse possuírem esses problemas, são os principais focos dos profissionais
que analisam as imagens médicas. Este trabalho visa, portanto, contribuir para a melhoria da
segmentação dessas imagens médicas. Para isso, utiliza a ideia do Bagging de gerar diferentes
imagens 2D para segmentar a partir de uma única imagem 3D, e conceitos de combinação de
classificadores para uni-las, para assim conseguir resultados estatisticamente melhores, se
comparados aos métodos populares de segmentação. Para se verificar a eficácia do método
proposto, a segmentação das imagens foi feita utilizando quatro técnicas de segmentação
diferentes, e seus resultados combinados. As técnicas escolhidas foram: binarização pelo
método de Otsu, o K-Means, rede neural SOM e o modelo estatístico GMM. As imagens
utilizadas nos experimentos foram imagens reais, de ressonâncias magnéticas do cérebro, e o
intuito do trabalho foi segmentar a matéria cinza do cérebro. As imagens foram todas em 3D,
e as segmentações foram feitas em fatias 2D da imagem original, que antes passa por uma
fase de pré-processamento, onde há a extração do cérebro do crânio. Os resultados obtidos
mostram que o método proposto se mostrou bem sucedido, uma vez que, em todas as técnicas
utilizadas, houve uma melhoria na taxa de acerto da segmentação, comprovada através do
teste estatístico T-Teste. Assim, o trabalho mostra que utilizar os princípios de combinação de
classificadores em segmentações de imagens médicas pode apresentar resultados melhores. / Automatic image segmentation is still a great challenge today. Despite the human being able
to make this distinction, in most of the cases easily and quickly, to a computer this task may
not be that trivial. Several characteristics have to be taken into account by the computer,
which may include color, position, neighborhoods, texture, among others. This challenge
increases greatly when it comes to using medical images, like the MRI, as these besides
producing images of organs with different formats in different people, have regions where the
intensity variation of pixels is subtle between neighboring pixels, which complicates even
more the automatic segmentation. Furthermore, the above mentioned variation does not allow
a pre-defined format in various cases, because the internal differences between patients
bodies, especially those with a pathology, may be too large to make a generalization. But
specially for having this kind of problem, those people are the main targets of the
professionals that analyze medical images. This work, therefore, tries to contribute to the
segmentation of medical images. For this, it uses the idea of Bagging to generate different 2D
images from a single 3D image, and combination of classifiers to unite them, to achieve
statistically significant better results, if compared to popular segmentation methods. To verify
the effectiveness of the proposed method, the segmentation of the images is performed using
four different segmentation techniques, and their combined results. The chosen techniques are
the binarization by the Otsu method, K-Means, the neural network SOM and the statistical
model GMM. The images used in the experiments were real MRI of the brain, and the
dissertation objective is to segment the gray matter (GM) of the brain. The images are all in
3D, and the segmentations are made using 2D slices of the original image that pass through a
preprocessing stage before, where the brain is extracted from the skull. The results show that
the proposed method is successful, since, in all the applied techniques, there is an
improvement in the accuracy rate, proved by the statistical test T-Test. Thus, the work shows
that using the principles of combination of classifiers in medical image segmentation can
obtain better results.
|
Page generated in 0.0405 seconds