Spelling suggestions: "subject:"lic"" "subject:"clic""
41 |
Application of GEANT4 toolkit for simulations of high gradient phenomenaPersson, Daniel January 2018 (has links)
To study electron emissions and dark currents in the accelerating structures in particle colliders, a test facility with a spectrometer has been constructed at CERN. This spectrometer has been simulated in the C++ toolkit GEANT4 and in this project the simulation has been improved to handle new realistic input data of the emitted electrons. The goal was to find relations between where the electrons are emitted inside the accelerating structure and the energy or position of the particles measured by the spectrometer. The result was that there is a linear relation between the initial position of the electrons and the width in the positions of the particles measured by the spectrometer. It also appears to be a relations between energy the emitted electrons get in the accelerating structure, which is related to the position, and the energy they deposit in the spectrometer. Further studies where the simulations are compared with real measurement data are required to determine whether these relations are true or not, find better reliability in the relations and get a better understanding of the phenomena.
|
42 |
Thermo-mechanical analysis of cryo-cooled electrode system in COMSOLOlofsson, Joel January 2018 (has links)
In the planned linear accelerator called Compact Linear Collider, CLIC, electrons and positrons will be accelerated to velocities near the speed of light. A limiting factor in accelerating structures are vacuum breakdowns, which are electrical discharges from a surface as a result of a large electric field being applied. In the preparatory studies for the CLIC, Uppsala University in collaboration with The European Organization for Nuclear Research, CERN, is building a DC Spark system to analyze vacuum breakdowns. This system containing large planar electrodes will be cooled down all the way down to around 4 K in order to limit the rate of wich vacuum breakdowns happen. When cooling a system like this, which consists of different components made of different materials there is the question of how the system will be affected. The objective of this project is to investigate how the cooling will affect the stability in terms of stresses and to analyze the cool down time of the system. Another goal is to make a material recommendation for a few parts based on the results. This will be done by simulating the cooling in COMSOL Multiphysics, which is a program that uses finite element analysis to solve complex problems where different branches of physics interact. The conclusion is that the system will most likely be stable as it is and there is no need to redesign it. The choice of recommended material is alumina with the reason being it should cause the least stress and the smallest gap between the electrodes when the cooling is done. There was no big difference in the cool down time between the materials. Further studies and simulations on the system is also recommended since there are many factors not taken into consideration in this study.
|
43 |
Mitteilungen des URZ 2000Becher,, Clauß,, Heik,, Hübsch,, Müller,, Richter,, Riedel,, Schier,, Wolf,, Ziegler, 23 November 2000 (has links)
Inhalt:
Das CLIC-Projekt;
X2X - ein Werkzeug zur Darstellung von XML-Dokumenten;
Software-Bereitstellung;
Der Backupdienst des URZ;
Betreuung von Ausbildungspools durch das URZ;
Aktueller Netzausbauzustand;
Komfortablere E-Mail-Bearbeitung mit IMAP;
MagicPoint - Präsentationen unter Linux;
10 Jahre ¨UNIX-Stammtisch in Sachsen¨
|
44 |
Mitteilungen des URZ 4/2001Becher,, Ehrig,, Fritsche,, Hübner,, Meyer,, Müller,, Pester,, Richter,, Riedel,, Ziegler, 06 December 2001 (has links)
Inhalt:
Neue Aufgaben im URZ - Änderungen im Kursprogramm;
Ein Jahr CLiC - ein Überblick;
Wissenschaftliche Rechnungen auf CLiC;
"camo - campus mobil" - das neue Funknetz im Campus;
Mailfilter - Teil 2;
HBFG-Projekt: Kommunikations- und Applikationsserver-Infrastruktur;
MONARCH-Dokumente in nichtlokalen Recherchesystemen;
SPARC III CPU-Server gulliver;
Software-News;
TeX-Stammtisch
|
45 |
Mitteilungen des URZ 4/2002Becher,, Fischer,, Grunewald,, Junghänel,, Müller,, Richter,, Riedel, 17 December 2002 (has links)
Mitteilungen des URZ 4/2002
|
46 |
Mitteilungen des URZ 4/2005Heik, Andreas, Müller, Thomas, Richter, Frank, Riedel, Wolfgang, Schmidt, Ronald, Trapp, Holger 21 November 2005 (has links) (PDF)
Informationen des Universitätsrechenzentrums
|
47 |
Mitteilungen des URZ 4/2001Becher, Ehrig, Fritsche, Hübner, Meyer, Müller, Pester, Richter, Riedel, Ziegler 06 December 2001 (has links)
Inhalt:
Neue Aufgaben im URZ - Änderungen im Kursprogramm;
Ein Jahr CLiC - ein Überblick;
Wissenschaftliche Rechnungen auf CLiC;
'camo - campus mobil' - das neue Funknetz im Campus;
Mailfilter - Teil 2;
HBFG-Projekt: Kommunikations- und Applikationsserver-Infrastruktur;
MONARCH-Dokumente in nichtlokalen Recherchesystemen;
SPARC III CPU-Server gulliver;
Software-News;
TeX-Stammtisch
|
48 |
Mitteilungen des URZ 3/2005Ehrig, Matthias, Grunewald, Dietmar, Pöhnitzsch, Thomas, Richter, Frank, Riedel, Wolfgang, Schmidt, Ronald, Wegener, Edwin, Ziegler, Christoph 17 August 2005 (has links)
Informationen des Universitätsrechenzentrums:Aktualisierung der Antivirensoftware an der TUC
WXPADM und WXPI
Tipps zur Bereitstellung von Lehrmaterialien im Campusnetz
Was gibt es Neues am CLiC?
Campusnetzzugang für Gäste der TUC (Gast-Logins)
Phishing: Versuchter Datenklau per E-Mail
Kurzinformationen
|
49 |
Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERNGarcía Garrigós, Juan José 05 December 2013 (has links)
The work for this thesis is in line with the field of Instrumentation for Particle Accelerators,
so called Beam Diagnostics. It is presented the development of a series of
electro-mechanical devices called Inductive Pick-Ups (IPU) for Beam Position Monitoring
(BPM). A full set of 17 BPM units (16 + 1 spare), named BPS units, were built and
installed into the Test Beam Line (TBL), an electron beam decelerator, of the 3rd CLIC
Test Facility (CTF3) at CERN ¿European Organization for the Nuclear Research¿.
The CTF3, built at CERN by an international collaboration, was meant to demonstrate
the technical feasibility of the key concepts for CLIC ¿Compact Linear Collider¿ as a
future linear collider based on the novel two-beam acceleration scheme, and in order to
achieve the next energy frontier for a lepton collider in theMulti-TeV scale. Modern particle
accelerators and in particular future colliders like CLIC requires an extreme alignment
and stabilization of the beam in order to enhance its quality, which rely heavily on a beam
based alignment techniques. Here the BPMs, like the BPS-IPU, play an important role
providing the beam position with precision and high resolution, besides a beam current
measurement in the case of the BPS, along the beam lines.
The BPS project carried out at IFIC was mainly developed in two phases: prototyping
and series production and test for the TBL.
In the first project phase two fully functional BPS prototypes were constructed, focusing
in this thesis work on the electronic design of the BPS on-board PCBs (Printed Circuit
Boards) which are based on transformers for the current sensing and beam position measurement.
Furthermore, it is described the monitor mechanical design with emphasis on
all the parts directly involved in its electromagnetic functioning, as a result of the coupling
of the EM fields generated by the beam with those parts. For that, it was studied
its operational parameters, according the TBL specifications, and it was also simulated a
new circuital model reproducing the BPS monitor frequency response for its operational
bandwidth (1kHz-100MHz). These prototypes were initially tested in the laboratories of
the BI-PI section¿Beam Instrumentation - Position and Intensity¿ at CERN.
In the second project phase the BPS monitor series, which were built based on the experience
acquired during the prototyping phase, the work was focused on the realization of
the characterization tests to measure the main operational parameters of each series monitor,
for which it was designed and constructed two test benches with different purposes
and frequency regions. The first one is designed to work in the low frequency region,
between 1kHz-100MHz, in the time scale of the electron beam pulse with a repetition
period of 1s and an approximate duration of 140ns. This kind of test setups called Wire
Test-bench are commonly used in the accelerators instrumentation field in order to determine
the characteristic parameters of a BPM (or pick-up) like its linearity and precision
in the position measurement, and also its frequency response (bandwidth). This is done
by emulating a low current intensity beam with a stretched wire carrying a current signals which can be precisely positioned with respect the device under test. This test bench was
specifically made for the BPS monitor and conceived to perform the measurement data
acquisition in an automated way, managing the measurement equipment and the wire positioning
motors controller from a PC workstation. Each one of the BPS monitors series
were characterized by using this system at the IFIC labs, and the test results and analysis
are presented in this work.
On the other hand, the high frequency tests, above the X band in the microwave spectrum
and at the time scale of the micro-bunch pulses with a bunching period of 83ps
(12GHz) inside a long 140ns pulse, were performed in order to measure the longitudinal
impedance of the BPS monitor. This must be low enough in order to minimize the
perturbations on the beam produced at crossing the monitor, which affects to its stability
during the propagation along the line. For that, it was built the high frequency test bench
as a coaxial waveguide structure of 24mm diameter matched at 50¿ and with a bandwidth
from 18MHz to 30GHz, which was previously simulated, and having room in the
middle to place the BPS as the device under test. This high frequency test bench is able
to reproduce the TEM (Transversal Electro-Magnetic) propagative modes corresponding
to an ultra-relativistic electron beam of 12GHz bunching frequency, so that the Scattering
parameters can be measured to obtain the longitudinal impedance of the BPS in the
frequency range of interest.
Finally, it is also presented the results of the beam test made in the TBL line, with
beam currents from 3.5A to 13A (max. available at the moment of the test). In order
to determine the minimum resolution attainable by a BPS monitor in the measurement
of the beam position, being the device figure of merit, with a resolution goal of 5¿m at
maximum beam current of 28A according to the TBL specifications. / García Garrigós, JJ. (2013). Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34327
|
50 |
Beam position monitoring in the clic drive beam decelerator using stripline technologyBenot Morell, Alfonso 16 May 2016 (has links)
[EN] The Compact Linear Collider (CLIC) is an electron-positron collider conceived for the study of High-Energy Physics in the TeV center of mass energy region, is based on a two-beam operation principle: instead of using active elements (klystrons), the necessary RF power to accelerate the Main Beam (MB) is obtained from the deceleration of a high-current, moderate energy Drive Beam (DB) in the so-called Power Extraction and Transfer Structures (PETS). These structures emit an RF signal of about 130 MW power at 12 GHz. As this frequency is above the cut-o ff frequency of the fundamental mode for the specified beam pipe dimensions (7.6 GHz), the inference propagates from the PETS to the neighboring devices, including the Beam Position Monitors (BPM).
According to the CLIC Conceptual Design Report (CDR), an ef ficient beam position monitoring system for the CLIC DB decelerator needs to meet the following requirements:
- It should be as simple and economic as possible, as 41580 units are required, amounting to 75% of all CLIC BPMs.
- The signal processing scheme should not be a ffected by the PETS interference. This rules out processing the signals at the beam bunching frequency (12 GHz).
- The resulting position signal should detect changes in the beam position whose duration is 10 ns or longer.
- The required spatial resolution is 2 um for a 23 mm diameter vacuum pipe.
- Wide dynamic range: the electronic acquisition system must be able to process signals with extreme levels, induced by either very high (100 A) or very low (3 A) current beams.
This PhD thesis describes the electromagnetic and mechanical design of the first prototype BPM developed for the CLIC Drive Beam and its characterization tests in laboratory and with beam. The first two chapters introduce the CLIC project and review the state-of-the-art beam position monitoring techniques.
Chapter 3 presents the design of the BPM. The stripline technology has been selected, as it is the only one among the most commonly used BPM techniques to present a suitable frequency response to filter out the RF interference caused by the PETS. Choosing an appropriate length for the electrodes, it is possible to tune one the periodic notches in the stripline frequency response to 12 GHz. The influence of di erent electromagnetic and
geometrical aspects is also studied, such as beam coupling impedance or the ratio between longitudinal and transverse dimensions.
The design of the electronic acquisition system is presented in Chapter 4, considering the project requirements in terms of resolution (2 u m), accuracy (20 um) and time resolution (10 ns). Due to the high amount of units required, the number of electronics components has been minimized. As the designed signal processing scheme is based on charge integration, it can be adapted to di erent stripline pick-ups by simply modifying the attenuator settings according to the required output signal levels.
The laboratory characterization tests of the prototype stripline BPM, in the low and the high frequency ranges, performed with a thin wire and a coaxial waveguide, respectively, are described in Chapter 5. The measurement results are compared with the theoretical estimation and the electromagnetic field simulations. In addition, the high-frequency test reveals that the first prototype stripline BPM does not provide su cient suppression of the 12 GHz PETS RF interference. An additional study proposed several modifications and guidelines for a second prototype stripline BPM.
Finally, Chapter 6 presents the beam tests of the prototype stripline BPM at the CLIC Test Facility 3 (CTF3) in the Test Beam Line (TBL), a scaled version of the CLIC Drive Beam decelerator. Two types of tests were performed: linearity/sensivity and resolution. These results are compared to the ones in the laboratory characterization tests. An upper bound of the resolution is estimated performing a Singular Value Decomposition (SVD) analysis. / [ES] El Colisionador Lineal Compacto (Compact Linear Collider, CLIC), un colisionador de electrones y positrones concebido en el CERN para el estudio de la Física de Altas Energías en la región de los TeV, se basa en un principio de funcionamiento de doble haz: en lugar de emplear elementos activos (klystrons) para proporcionar la potencia RF requerida para acelerar el haz principal (Main Beam, MB), ésta se obtiene de la deceleración de un haz secundario (Drive Beam, DB), de alta corriente y energía moderada, en las llamadas estructuras de extracción y transferencia de potencia (Power Extraction and Transfer Structures, PETS). Estas estructuras emiten una señal interferente RF de más de 130 MW de potencia a 12 GHz, que, por estar localizada en una frecuencia superior a la de corte del modo fundamental en el tubo de vacío del haz (7.6 GHz), se propaga por éste hacia los dispositivos adyacentes, entre los cuales se encuentran los sistemas de monitorización de la posición (Beam Position Monitor, BPM).
De acuerdo con el informe conceptual de diseño de CLIC (Conceptual Design Report, CDR) , un sistema eficiente de monitorización de la posición del haz en el decelerador del haz secundario deberá cumplir los siguientes requisitos:
- Debe ser lo más sencillo y económico posible, ya que se precisan 41580 unidades: el 75% de todos los BPMs de CLIC.
- El procesado de señal en el sistema de adquisición deberá ser inmune a la interferencia generada en las PETS. Esto excluye la solución habitual de procesar las señales del BPM a la frecuencia de pulsado del haz (12 GHz).
- La señal de posición resultante del procesado debe ser capaz de detectar cambios en la posición del haz de duración igual o mayor a 10 ns (resolución temporal).
- La resolución espacial requerida es de 2 um para un tubo de vacío de 23 mm de diámetro, con una calibración precisa.
- Amplio rango dinámico: el sistema electrónico de adquisición del BPM debe poder resistir los altos valores de señal provocados por los casos de desviación extrema del haz nominal (se contempla una desviación máxima de la mitad del radio del tubo), así como detectar las señales inducidas por las configuraciones de haz con menor carga de todas las previstas, cuyos niveles serán muy débiles. / [CA] El Col·lisionador Lineal Compacte (Compact Linear Collider, CLIC), un col·lisionador d'electrons i positrons concebut per l'estudi de la Física d'Altes Energies a la regió dels TeV (energía del centre de massa), es basa en un principi de funcionament de doble feix:en lloc de fer servir elements actius (klystrons) per proporcionar la potència RF requerida per accelerar el feix principal (Main Beam, MB), aquesta s'obtè de la desacceleració d'un feix secundari (Drive Beam, DB), d'alt corrent i energia moderada, a les anomenades estructures d'extracció i transferència de potència (Power Extraction and Transfer Structures, PETS). Aquestes estructures emeten una senyal interferent RF de més de 130 MW de potència a 12 GHz, que, pel fet d'estar localitzada a una freqüència superior a la de tall del mode fonamental al tub de buit del feix (7.6 GHz), es propaga a través d'aquest fins els dispositius adjacents, entre els quals trobem els sistemes de monitorització de la posició (Beam Position Monitor, BPM).
D'acord amb l'informe conceptual de disseny de CLIC (Conceptual Design Report, CDR), un sistema eficient de monitorització de la posició del feix al desaccelerador del feix secundari haurà de complir els següents requisits:
¿ - Ha de ser el més senzill i econòmic possible, ja que es necessiten 41580 unitats: el 75% de tots els BPMs de CLIC.
¿ - El processat de la senyal al sistema d'adquisició haurà de ser inmune a la interferència generada als PETS. Això exclou la solució habitual de processar les senyals del BPM a la freqüència de pulsacions del feix (12 GHz).
¿- La senyal de posició resultant del processat ha de ser capaç de detectar canvis a la posició del feix de durada igual o més gran que 10 ns (resolució temporal).
¿- La resolució espaial necessària és de 2 um per a un tub de buit de 23 mm de diàmetre.
¿- Ampli rang dinàmic: el sistema electrònic d'adquisició del BPM ha de poder processar senyals amb nivells extrems, induïdes per feixos de molt alt (100 A) i molt baix (3 A) corrent. / Benot Morell, A. (2016). Beam position monitoring in the clic drive beam decelerator using stripline technology [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64067
|
Page generated in 0.0417 seconds