• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 15
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integrated Circuits Based on Individual Single-Walled Carbon Nanotube Field-Effect Transistors

Ryu, Hyeyeon 08 October 2012 (has links)
This thesis investigates the fabrication and integration of nanoscale field-effect transistors based on individual semiconducting carbon nanotubes. Such devices hold great potential for integrated circuits with large integration densities that can be manufactured on glass or flexible plastic substrates. A process to fabricate arrays of individually addressable carbon-nanotube transistors has been developed, and the electrical characteristics of a large number of transistors has been measured and analyzed. A low-temperature-processed gate dielectric with a thickness of about 6 nm has been developed that allows the transistors and circuits to operate with voltages of about 1.5 V. The transistors show excellent electrical properties, including a large transconductance (up to 10 µS), a large On/Off ratio (>10^4), a steep subthreshold swing (65 mV/decade), and negligible leakage currents (~10^-13 A). For the realization of unipolar logic circuits, monolithically integrated load resistors based on high-resistance metallic carbon nanotubes or vacuum-evaporated carbon films have been developed and analyzed by four-probe and transmission line measurements. A variety of combinational logic circuits, such as inverters, NAND gates and NOR gates, as well as a sequential logic circuit based on carbon-nanotube transistors and monolithically integrated resistors have been fabricated on glass substrates and their static and dynamic characteristics have been measured. Optimized inverters operate with frequencies as high as 2 MHz and switching delay time constants as short as 12 ns. / Thema dieser Arbeit ist die Herstellung und Integration von Feldeffekt-Transistoren auf der Grundlage einzelner halbleitender Kohlenstoffnanoröhren. Solche Bauelemente sind zum Beispiel für die Realisierung integrierter Schaltungen mit hoher Integrationsdichte auf Glassubstraten oder auf flexiblen Kunststofffolien von Interesse. Zunächst wurde ein Herstellungsverfahren für die Anfertigung einer großen Anzahl solcher Transistoren auf Glas- oder Kunststoffsubstraten entwickelt, und deren elektrische Eigenschaften wurden gemessen und ausgewertet. Das Gate-Dielektrikum dieser Transistoren hat eine Schichtdicke von etwa 6 nm, so das die Versorgungsspannungen bei etwa 1.5 V liegen. Die Transistoren haben sehr gute elektrische Parameter, z.B. einen großen Durchgangsleitwert (bis zu 10 µS), ein großes Modulationsverhältnis (>10^4), einen steilen Unterschwellanstieg (65 mV/Dekade) und vernachlässigbar kleine Leckströme (~10^-13 A). Für die Realisierung unipolarer Logikschaltungen wurden monolithisch integrierte Lastwiderstände auf der Grundlage metallischer Kohlenstoffnanoröhren mit großem Widerstand oder mittels Vakuumabscheidung erzeugter Kohlenstoffschichten entwickelt und u. a. mittels Vierpunkt- und Transferlängen-Messungen analysiert. Eine Reihe kombinatorischer Schaltungen, z.B. Inverter, NAND-Gatter und NOR-Gatter, sowie eine sequentielle Logikschaltung wurden auf Glassubstraten hergestellt, und deren statische und dynamische Parameter wurden gemessen. Optimierte Inverter arbeiten bei Frequenzen von bis zu 2 MHz und haben Signalverzögerungen von lediglich 12 ns.
12

Passivierung von Kohlenstoffnanoröhren-Feldeffekttransistoren mit Hexamethyldisiloxan

Roscher, Willi 27 June 2019 (has links)
Kohlenstoffnanoröhren (engl. carbon nanotubes) bieten hervorragende elektrische Eigenschaften für neuartige Feldeffekttransistoren (engl. field-effect transistors) auf engstem Raum. Eine Möglichkeit zur Verbesserung der elektrischen Eigenschaften bietet eine geeignete Passivierung mit Hexamethyldisiloxan. In dieser Arbeit werden eine Flüssig- und eine Gasphasenbehandlung von Siliziumoxid-Oberflächen mit Hexamethyldisiloxan untersucht. Die Oberflächen werden dabei in wenigen Minuten hydrophobiert. Nach längeren Behandlungszeiten werden Wasserkontaktwinkel von 95° erreicht, die auch noch nach mehreren Tagen und einer Woche nachweisbar sind. In der Anwendung auf Kohlenstoffnanoröhren-Feldeffekttransistoren (engl. carbon nanotube field-effect transistors) wird die Hysterese um durchschnittlich 30 % gesenkt. Das Ziel der Behandlung wurde damit erreicht und lässt sich auf die erfolgreiche Beseitigung von Ladungsfallen durch Adsorbate zurückführen. Zusätzlich sinkt der An-Strom um 60 %. Für gute An-Aus-Verhältnisse über mehrere Größenordnungen bedeutet das jedoch keine drastische Verschlechterung der Schalteigenschaften. Die in dieser Arbeit vorgeschlagene Hexamethyldisiloxan-Gasphasenbehandlung kann daher erfolgreich zur Verringerung der Hysterese in Kohlenstoffnanoröhren-Feldeffekttransistoren eingesetzt werden.:1 Einleitung 6 2 Material und Methoden 8 2.1 Siliziumoxid-Oberflächen 8 2.2 Hexamethyldisiloxan als Passivierungsmittel 8 2.3 Flüssigphasenbehandlung 9 2.4 Gasphasenbehandlung 10 2.5 Kontaktwinkelmessung 11 3 Feldeffekttransistoren auf der Basis von Kohlenstoffnanoröhren 13 3.1 Kohlenstoffnanoröhren 13 3.1.1 Struktur und Nomenklatur 13 3.1.2 Elektrische Eigenschaften 14 3.2 Kohlenstoffnanoröhren-Feldeffekttransistoren 16 3.2.1 Aufbau, Herstellung und Funktionsprinzip 16 3.2.2 Kenngrößen zur FET-Charakterisierung 17 3.2.3 IU-Messung 19 4 Ergebnisse und Auswertung 20 4.1 Ergebnisse der Kontaktwinkelmessungen 20 4.1.1 Referenzmessungen auf Siliziumoxidoberflächen 20 4.1.2 Flüssigphasenbehandlung 21 4.1.3 Gasphasenbehandlung 21 4.1.4 Fehlerbetrachtung 25 4.1.5 Vergleich von Flüssig- und Gasphasenbehandlung 26 4.2 HMDSO-Behandlung von CNTFETs 27 4.2.1 Ergebnisse der IU-Messungen 28 4.2.2 Fehlerbetrachtung 31 5 Zusammenfassung der Ergebnisse und Ausblick 32
13

Improvement of carbon nanotube-based field-effect transistors by cleaning and passivation

Tittmann-Otto, Jana 16 October 2020 (has links)
Ever since their discovery in 1991, carbon nanotubes are of great interest to the scientific community due to their outstanding optical, mechanical and electrical properties. Considering their impressive properties, as for instance the high current carrying capability and the possibility of ballistic charge transport, carbon nanotubes are a desired channel material in field-effect transistors, especially with respect to high frequency communication electronics. Thus, many scientific studies on CNT-based field-effect transistors have been published so far. But despite the successful verification of excellent individual electric key values, corresponding experiments are mostly performed under synthetic conditions (considering e.g. temperature or gas atmosphere), which are not realizable during realistic application scenarios. Furthermore, technologically relevant factors like homogeneity, reproducibility and yield of functioning devices are often subordinated to the achievement of a single electric record value. Hence, this work focuses on the development of a fabrication technology for carbon nanotube field-effect transistors, that takes those factors into account. Thereby, this work expands the state of the art by introduction and statistical assessment of two cleaning processes: a) wet chemical removal of surfactant residues (sodium dodecylsulfate) from CNTs, integrated using the dielectrophoretic approach, by investigation and comparison of four procedures (de-ionized water, HNO3, oDCB, Ethanol); b) the reduction of process-related substrate contaminations by application of an oxygen plasma. Beyond that, the passivation of the final, working devices is developed further, as their typical definition as diffusion barrier is expanded by the reduction of parasitic capacitances in the transistor. In this context, two so far barely considered materials, hydrogen silsesquioxane and Xdi-dcs, a polymer mixture of poly(vinylphenol) and polymethylsilsesquioxane, are investigated and assessed. The novelty of the Xdi-dcs mixture causes the necessity of fundamental considerations on controllable etching procedures and resulting adaptions of the technological fabrication sequence.:Bibliographic description 3 List of abbreviations 10 List of symbols 10 1 Introduction 13 2 Basics of carbon nanotubes 15 2.1 Structural fundamentals 15 2.1.1 Hybridization of carbon 15 2.1.2 Structure of carbon nanotubes 17 2.2 Electronic properties 19 2.2.1 Band structure of graphene 19 2.2.2 Band structure of carbon nanotubes 20 2.2.3 Electronic transport in CNTs 22 2.3 Procedures for CNT integration 23 2.3.1 Growth by chemical vapor deposition 24 2.3.2 Transfer techniques 24 2.3.3 Dispersion-related integration procedures 25 2.4 Interaction of CNT and surfactant 28 3 Basics of CNT field-effect transistors 31 3.1 Principle of operation of conventional FETs 31 3.2 Distinctive features of CNT-based FETs 32 3.2.1 Metal - semiconductor contact 33 3.2.2 Linearity 38 3.3 Performance determining factors 41 3.3.1 Device architecture 41 3.3.2 Contact geometry 46 3.3.3 Other transistor dimensions 48 3.3.4 CNT-related characteristics 49 3.4 Hysteresis in transfer characteristics 51 3.4.1 Definition of hysteresis 51 3.4.2 Origins of hysteresis 52 3.4.3 Appearance of hysteresis 53 3.5 Passivation 56 3.5.1 Requirements 56 3.5.2 Importance of pre-treatments and process conditions 57 3.5.3 Overview of established passivation materials 58 4 Experimental work 63 4.1 Transistor design 63 4.2 Technology flow 66 4.3 Experimental procedures 71 4.3.1 Procedures for dissolution of SDS 71 4.3.2 Plasma treatment against surface contaminations 72 4.3.3 Evaluation of diffusion barriers 72 4.4 Instrumentation and characterization 74 4.4.1 Dielectrophoresis instrumentation 74 4.4.2 Topographical Characterization 74 4.4.3 Chemical characterization 75 4.4.4 Electrical characterization 76 5 Reduction of hysteresis 77 5.1 Removal of surfactant molecules from CNTs 77 5.1.1 Influence on molecule and CNT chemistry 78 5.1.2 Effect on transistor performance 80 5.2 Plasma-assisted removal of substrate contaminations 87 5.2.1 Influence on substrate surface 88 5.2.2 Effect on transistor performance 92 6 Passivation 97 6.1 Protection against environmental effects 97 6.1.1 Alterability of unpassivated CNT-FETs 98 6.1.2 Effects of O2 exclusion by dense passivation 99 6.1.3 Intentional doping using Y2O3 101 6.2 Passivation considering electrostatic aspects 106 6.2.1 Integration of Xdi-dcs as novel passivation 107 6.2.2 Comparison of two spin-coated dielectrics 111 6.3 Potential of double-layer approaches 113 6.3.1 Evaluation of the gas barrier performance 113 6.3.2 Influence on the transistor behavior 116 7 Summary and Outlook 121 Danksagung 127 Appendix 129 Bibliography 137 List of figures 156 List of tables 161 Selbstständigkeitserklärung 163 8 Thesen 165 9 Curriculum vitae 169 / Bereits seit ihrer Entdeckung 1991 sind Kohlenstoffnanoröhren, aufgrund ihrer herausragenden optischen, mechanischen und elektrischen Eigenschaften, für die wissenschaftliche Community von großem Interesse. Ihre Verwendung als Kanalmaterial in Feld-Effekt Transistoren ist in Anbetracht ihrer außergewöhnlichen Eigenschaften, wie z. B. die hohe Stromtragfähigkeit, sowie die Möglichkeit des ballistischen Transports von Ladungsträgern besonders für die hochfrequente Kommunikationselektronik erstrebenswert. Dementsprechend viele wissenschaftliche Arbeiten befassen sich mit der Erforschung von auf Kohlenstoffnanoröhren basierenden Transistoren. Doch trotz des erfolgreichen Nachweises ausgezeichneter Werte für viele individuelle elektrische Kenngrößen, finden entsprechenden Experimente zumeist unter anwendungsfernen Bedingungen bezüglich Temperatur bzw. Gasatmosphäre statt. Darüber hinaus werden dem Erreichen eines elektrischen Rekordwertes oft technologisch relevante Größen wie Homogenität, Reproduzierbarkeit und Ausbeute an funktionsfähigen Bauteilen untergeordnet. Der Fokus dieser Arbeit liegt daher auf der Erarbeitung einer Technologie zur Herstellung Kohlenstoffnanoröhrenbasierter Feld-Effekt Transistoren, unter Berücksichtigung dieser Aspekte. Dabei erweitert diese Arbeit den Stand der Technik durch die Einführung und statistische Beurteilung zweier Reinigungsprozesse: a) der nasschemischen Beseitigung von Tensidresten (Natriumdodecylsulfat) an mittels Dielektrophorese integrierten CNTs, wobei insgesamt vier Prozeduren (de-ionisiertes Wasser, HNO3, oDCB, Ethanol) betrachtet und miteinander verglichen wurden; b) der Beseitigung von prozessbedingten Substratkontaminationen durch ein Sauerstoffplasma. Darüber hinaus wird die Passivierung der funktionsfähigen Bauelemente weiterentwickelt, indem ihre typische Definition als Diffusionsbarriere um den Aspekt der Verringerung parasitärer Kapazitäten im Transistor erweitert wird. In diesem Zusammenhang werden mit Wasserstoff-Silsesquioxane und Xdi-dcs, einem Polymergemisch aus Poly(vinylphenol) und Polymethylsilsesquioxane, zwei bislang wenig beachtete Materialien, untersucht und bewertet. Die Neuheit des Xdi-dcs Gemisches macht dabei fundamentale Untersuchungen zur Strukturierbarkeit und entsprechende technologische Anpassungen im Gesamtablauf nötig.:Bibliographic description 3 List of abbreviations 10 List of symbols 10 1 Introduction 13 2 Basics of carbon nanotubes 15 2.1 Structural fundamentals 15 2.1.1 Hybridization of carbon 15 2.1.2 Structure of carbon nanotubes 17 2.2 Electronic properties 19 2.2.1 Band structure of graphene 19 2.2.2 Band structure of carbon nanotubes 20 2.2.3 Electronic transport in CNTs 22 2.3 Procedures for CNT integration 23 2.3.1 Growth by chemical vapor deposition 24 2.3.2 Transfer techniques 24 2.3.3 Dispersion-related integration procedures 25 2.4 Interaction of CNT and surfactant 28 3 Basics of CNT field-effect transistors 31 3.1 Principle of operation of conventional FETs 31 3.2 Distinctive features of CNT-based FETs 32 3.2.1 Metal - semiconductor contact 33 3.2.2 Linearity 38 3.3 Performance determining factors 41 3.3.1 Device architecture 41 3.3.2 Contact geometry 46 3.3.3 Other transistor dimensions 48 3.3.4 CNT-related characteristics 49 3.4 Hysteresis in transfer characteristics 51 3.4.1 Definition of hysteresis 51 3.4.2 Origins of hysteresis 52 3.4.3 Appearance of hysteresis 53 3.5 Passivation 56 3.5.1 Requirements 56 3.5.2 Importance of pre-treatments and process conditions 57 3.5.3 Overview of established passivation materials 58 4 Experimental work 63 4.1 Transistor design 63 4.2 Technology flow 66 4.3 Experimental procedures 71 4.3.1 Procedures for dissolution of SDS 71 4.3.2 Plasma treatment against surface contaminations 72 4.3.3 Evaluation of diffusion barriers 72 4.4 Instrumentation and characterization 74 4.4.1 Dielectrophoresis instrumentation 74 4.4.2 Topographical Characterization 74 4.4.3 Chemical characterization 75 4.4.4 Electrical characterization 76 5 Reduction of hysteresis 77 5.1 Removal of surfactant molecules from CNTs 77 5.1.1 Influence on molecule and CNT chemistry 78 5.1.2 Effect on transistor performance 80 5.2 Plasma-assisted removal of substrate contaminations 87 5.2.1 Influence on substrate surface 88 5.2.2 Effect on transistor performance 92 6 Passivation 97 6.1 Protection against environmental effects 97 6.1.1 Alterability of unpassivated CNT-FETs 98 6.1.2 Effects of O2 exclusion by dense passivation 99 6.1.3 Intentional doping using Y2O3 101 6.2 Passivation considering electrostatic aspects 106 6.2.1 Integration of Xdi-dcs as novel passivation 107 6.2.2 Comparison of two spin-coated dielectrics 111 6.3 Potential of double-layer approaches 113 6.3.1 Evaluation of the gas barrier performance 113 6.3.2 Influence on the transistor behavior 116 7 Summary and Outlook 121 Danksagung 127 Appendix 129 Bibliography 137 List of figures 156 List of tables 161 Selbstständigkeitserklärung 163 8 Thesen 165 9 Curriculum vitae 169
14

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 16 December 2014 (has links) (PDF)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.
15

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 20 November 2014 (has links)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.:Abkürzungsverzeichnis Symbolverzeichnis Konstanten Mathematische Notation 1. Einleitung 2. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.1. Geometrische Struktur von Kohlenstoffnanoröhrchen 2.2. Elektronische Eigenschaften von Kohlenstoffnanoröhrchen 2.3. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.3.1. Möglichkeiten der Kontaktierung 2.3.2. Geometrie des Gates 2.3.3. Kenngrößen zur Transistor-Charakterisierung 3. Simulationsmethoden 3.1. Grundlegende Begriffe 3.1.1. Schrödinger-Gleichung, Wellen- und Basisfunktion 3.1.2. Elektronendichte 3.1.3. Zustandsdichte 3.2. Atomistische Elektronenstrukturrechnung 3.2.1. Dichtefunktionaltheorie 3.2.2. Erweiterte Hückelmethode 3.3. Quantentransport 3.3.1. Streumechanismen und Transportregime 3.3.2. Landauer-Büttiker-Formalismus 3.3.3. Nichtgleichgewichts-Green-Funktionen-Formalismus 3.4. Numerische Bauelementesimulation 3.4.1. Schrödinger-Gleichung in effektiver-Massen-Näherung 3.4.2. Beschreibung der Kontakte 3.4.3. Lösung der Poisson-Gleichung 3.4.4. Selbstkonsistente Rechnung 4. Entwicklung des Modellsystems 4.1. Beschaffenheit des Kanals 4.2. Eigenschaften der Gate-Elektrode 4.3. Eigenschaften der Source- und Drain-Elektroden 5. Ergebnisse und Diskussion 5.1. Numerische Bauelementesimulation 5.1.1. Extraktion der Parameter 5.1.2. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.1.3. Transistorverhalten und Transistorregime 5.2. Atomistische Simulation 5.2.1. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.2.2. Transistorverhalten und Transistorregime 5.2.3. Einfluss der Dotierung 5.3. Variation der Kanallänge und Methodenvergleich 5.3.1. Diskussion der Transfercharakteristiken 5.3.2. Verhalten von An/Aus-Verhältnis und Subthreshold-Swing 5.4. Variation der Gate-Länge bei fester Kanallänge und Methodenvergleich 5.5. Abschließende Bemerkungen und Vergleich mit Literatur 6. Zusammenfassung der Ergebnisse und Ausblick A. Elektronische Struktur des (7,0)-Kohlenstoffnanoröhrchens B. Simulationsparameter B.1. Parameter für Rechnungen mit Dichtefunktionaltheorie B.2. Parameter für Rechnungen mit erweiterter Hückelmethode B.3. Verwendete Randbedingungen zur Lösung der Poisson-Gleichung C. Vergleich zwischen Dichtefunktionaltheorie und erweiterter Hückelmethode C.1. Physikalische Betrachtung C.2. Rechenzeit und Konvergenz Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Danksagung Selbstständigkeitserklärung

Page generated in 0.0188 seconds