Spelling suggestions: "subject:"fortransport"" "subject:"ortransport""
1 |
CO-TRANSPORT AND INTERACTION OF MICROPLASTICS AND HEAVY METAL IN AQUATIC ENVIRONMENTAZME, ANIKA 01 December 2022 (has links)
Plastics, due to their extensive production and inert nature, accumulate in the environment after their improper disposal. While being in the environment, these plastic-based products undergo different degradation processes resulting in smaller sized microplastics (MPs) and nanoscale plastics (NPs). MPs and NPs can adsorb various organic and inorganic contaminants due to their huge surface area to volume ratio and the presence of diverse functional groups. Hence, the presence of various contaminants in the environment can impact both the plastics and the adsorbed contaminants fate in the environment. In light of this, the current work investigates the co-transport behavior of polystyrene (PS) MPs and copper metal (Cu), as both PS MPs and Cu are commonly encountered in the environment. The co-transport behavior was observed by understanding the mobility and deposition behavior of both contaminants under various ionic strength conditions (IS) and salt types (NaCl, CaCl2). Bench scale packed column studies and batch adsorption experiments were used to observe the transport behavior. The quartz crystal microbalance (QCM) was used to determine the mechanisms responsible for the deposition behavior of MPs and NPs at the nanoscale level. Results showed that in the absence of Cu, the secondary energy minimum was responsible for the reduced PS mobility (40-60%) with increasing IS of NaCl and CaCl2 respectively. However, when Cu was present, PS mobility reduced even more (10-30%), which might result from the adsorption of PS-Cu complexes on porous media following their formation. Similarly, in the absence of PS, Cu had less mobility (nearly 10%) in all IS and salt types due to electrostatic attraction between sand and Cu. On the other hand, Cu demonstrated increasing mobility during co-transport owing to a lack of adsorption sites caused by the competing adsorption of PS and Cu. The batch adsorption results also revealed that MPs had a greater adsorption capacity on quartz sand in the presence of Cu, resulting in enhanced heavy metal mobility. QCM experiments also showed that with increasing IS and in absence of Cu, both MPs and NPs deposition on the silica surface increased due to compression of the electric double layer, following DLVO theory. However, in presence of Cu, PSMPs and PSNPs had 6.6 and 4.0-fold higher deposition respectively for NaCl and 1.5 and 4.8-fold respectively for CaCl2 under the high IS condition, than in absence of Cu. Positive metal ions can compress the electrostatic double-layer even more, lowering the energy barrier and form complexes with the PS causing greater PS deposition on the silica surfaces. Furthermore, QCM showed that regardless of the presence of heavy metals, NPs mass deposition was higher than MPs on the silica surface. According to DLVO theory, NPs had a lower energy barrier than MPs due to their smaller size, resulting in a higher deposition. In summary, the findings of this study showed that the interaction between PS and Cu can influence both their transport and deposition behaviors in the environment under different aquatic chemistry conditions. This work could be used to anticipate the fate and movement of MPs and NPs in the presence of other pollutants in the aquatic environment and allow necessary steps to be taken to prevent additional contamination and design their subsequent removal.
|
2 |
Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport PhagesYou, Xin, Klose, Niclas, Kallies, René, Harms, Hauke, Chatzinotas, Antonis, Wick, Lukas Y. 02 June 2023 (has links)
Recent studies have demonstrated that phages can be co-transported with motile non-host bacteria, thereby enabling their invasion of biofilms and control of biofilm composition. Here, we developed a novel approach to isolate non-host bacteria able to co-transport phages from soil. It is based on the capability of phage-carrying non-host bacteria to move along mycelia out of soil and form colonies in plaques of their co-transported phages. The approach was tested using two model phages of differing surface hydrophobicity, i.e., hydrophobic Escherichia virus T4 (T4) and hydrophilic Pseudoalteromonas phage HS2 (HS2). The phages were mixed into soil and allowed to be transported by soil bacteria along the mycelia of Pythium ultimum. Five phage-carrying bacterial species were isolated (Viridibacillus sp., Enterobacter sp., Serratia sp., Bacillus sp., Janthinobacterium sp.). These bacteria exhibited phage adsorption efficiencies of ≈90–95% for hydrophobic T4 and 30–95% for hydrophilic HS2. The phage adsorption efficiency of Viridibacillus sp. was ≈95% for both phages and twofold higher than T4-or HS2-adsorption to their respective hosts, qualifying Viridibacillus sp. as a potential super carrier for phages. Our approach offers an effective and target-specific way to identify and isolate phage-carrying bacteria in natural and man-made environments.
|
3 |
Effect of Feed Additives on Amino Acid and Dipeptide Transport by Intestines of American Lobster and Atlantic White ShrimpPeterson, Maria Louise 01 January 2014 (has links)
Previous nutritional physiology research using L-histidine and zinc in American lobster intestine (Homarus americanus) has suggested that these solutes can be co-transported as complexes (Histidine-Zinc-Histidine) across the intestine using a peptide transporter. Furthermore, transport of L-leucine was shown to be inhibited by high calcium concentrations. Dipeptide and bis-complex transport and the role of calcium were investigated in the perfused intestines of lobster and Atlantic white shrimp (Litopenaeus setiferus). Following trans-intestinal transport, serosal medium was analyzed for amino acid composition by gas chromatography. In lobster, the transport of glycylsarcosine (Gly-Sar) from mucosa to serosa was stimulated two-fold with luminal pH 8.5, compared to the pH 5.5 control. Mucosa to serosa and serosa to mucosa fluxes of Gly-Sar were measured; the dipeptide was transported intact in both directions, but the net flux was from mucosa to serosa. The use of 0.5mM calcium chloride stimulated Gly-Sar transport two-fold, compared to 25 mM. In shrimp, the addition of 50 µM zinc chloride increased the rate of L-histidine transport, while Gly-Sar inhibited histidine transport in the presence of zinc. The rate of histidine transport was significantly higher with 1mM calcium chloride than with 25mM. These results suggest that shrimp transport bis-complexes in a manner similar to lobster. High calcium concentration had an inhibitory effect on both amino acid and dipeptide transport. Proposed mechanisms accounting for the effects of metals and calcium on trans-intestinal transports of both amino acids and dipeptides by lobster and shrimp digestive tracts are discussed.
|
4 |
Site-specific functionalization of antigen binding proteins for cellular delivery, imaging and target modulationSchumacher, Dominik 09 November 2017 (has links)
Antikörper und Antigen-bindende Proteine, die an Fluorophore, Tracer und Wirkstoffe konjugiert sind, sind einzigartige Moleküle, welche die Entwicklung wertvoller diagnostischer und therapeutischer Werkzeuge ermöglichen. Allerdings ist der Konjugationsschritt sehr anspruchsvoll und trotz intensiver Forschung noch immer ein bedeutender Engpass. Zusätzlich sind Antigen-bindende Proteine oftmals nicht dazu in der Lage, die Zellmembran zu durchdringen und im Zellinneren nicht funktionsfähig. Daher ist ihre Verwendung auf extrazelluläre Targets beschränkt, was eine bedeutende Anzahl wichtiger Antigene vernachlässigt. Beide Limitierungen bilden Kernaspekte dieser Arbeit. Mit Tub-tag labeling wurde ein neuartiges und vielseitiges Verfahren für die ortsspezifische Funktionalisierung von Biomolekülen und Antigen-bindenden Proteinen entwickelt, und so die Palette der Proteinfunktionalisierungen bedeutend erweitert. Tub-tag wurde erfolgreich für die ortsspezifische Funktionalisierung verschiedener Proteine und Antigen-bindender Nanobodies angewendet, die für konfokale Mikroskopie, Proteinanreicherung und hochauflösende Mikroskopie eingesetzt wurden. In einem weiteren Projekt wurden zellpermeable Antigen-bindende Nanobodies hergestellt und somit das schon lange Zeit bestehende Ziel, intrazelluläre Targets durch in vitro funktionalisierte Antigen-bindende Proteine zu visualisieren und manipulieren, erreicht. Hierzu wurden zwei verschiedene Nanobodies an ihrem C-Terminus cyclischen zellpenetrierenden Peptiden unter Verwendung von Expressed Protein Ligation funktionalisiert. Diese Peptide ermöglichten die Endozytose-unabhängige Aufnahme der Nanobodies mit sofortiger Bioverfügbarkeit. Mit Tub-tag labeling und der Synthese von zellpermeablen Nanobodies konnten wichtige Bottlenecks im Bereich der Proteinfunktionalisierung und Antikörperforschung adressiert werden und neue Tools für die biochemische und zellbiologische Forschung entwickelt werden. / Antibodies and antigen binding proteins conjugated to fluorophores, tracers and drugs are powerful molecules that enabled the development of valuable diagnostic and therapeutic tools. However, the conjugation itself is highly challenging and despite intense research efforts remains a severe bottleneck. In addition to that, antibodies and antigen binding proteins are often not functional within cellular environments and unable to penetrate the cellular membrane. Therefore, their use is limited to extracellular targets leaving out a vast number of important antigens. Both limitations are core aspects of the presented thesis. With Tub-tag labeling, a novel and versatile method for the site-specific functionalization of biomolecules and antigen binding proteins was developed expanding the toolbox of protein functionalization. The method is based on the microtubule enzyme tubulin tyrosine ligase. Tub-tag labeling was successfully applied for the site-specific functionalization of different proteins including antigen binding nanobodies which enabled confocal microscopy, protein enrichment and super-resolution microscopy. In addition to that, cell permeable antigen binding nanobodies have been generated constituting a long thought goal of tracking and manipulating intracellular targets by in vitro functionalized antigen binding proteins. To achieve this goal, two different nanobodies were functionalized at their C-terminus with linear and cyclic cell-penetrating peptides using expressed protein ligation. These peptides triggered the endocytosis independent uptake of the nanobodies with immediate bioavailability. Taken together, Tub-tag labeling and the generation of cell-permeable antigen binding nanobodies strongly add to the functionalization of antibodies and their use in biochemistry, cell biology and beyond.
|
Page generated in 0.0406 seconds