• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of temperature on copper chemical mechanical planarization

Kakireddy, Veera Raghava R 01 June 2007 (has links)
The effects of different process parameters on tribology and surface defects were studied till date, but there has been a very minimal study to understand the effect of slurry temperature during Copper Chemical Mechanical Polishing (CMP). The surface defects such as dishing, erosion and metal loss amount for more than 50% of the defects that hamper the device yield and mainly the electrical properties during the manufacturing process. In this research, the effect of slurry temperature on tribology, surface defects and electrical properties during copper CMP employing different pad materials and slurries has been explored. Experiments were conducted at different slurry temperatures maintaining all the other process parameters constant. Post polished copper samples were analyzed for their dishing and metal loss characteristics. From the results, it was seen that the coefficient of friction and removal rate increased with increase in slurry temperature during polishing with both types of polishing pads. This increase in removal rate is attributed to a combined effect of change in pad mechanical properties and chemical reaction kinetics. The experimental data indicated that the increase in slurry temperature results in an increase in amounts of metal dishing and copper metal loss for one type of slurry and defects decrease with increase in slurry temperature for other type of slurry. This phenomenon indicates the effect of temperature on chemical reaction kinetics and its influence on defect generation. This can be attributed due to the change in pad asperities due to change in pad mechanical properties and chemical kinetics with change in slurry temperature. The slurry temperature has an effect not only on the surface defects and tribology but also on the change in pad mechanical properties. The copper thin films peeled off at higher polishing temperatures, leading to adhesion failure. With increase in temperature the copper crystallinity, hardness and modulus increased. Further with increase in the defects the electrical properties of the devices also degraded drastically and even failed to operate at higher levels of dishing and metal loss. This research is aimed at understanding the physics governing the defect generation during CMP.
2

Material Characterization Using Nuclear Magnetic Resonance

Pope, Giovanna Marcella 23 February 2022 (has links)
Nuclear magnetic resonance techniques can provide highly accurate information about the local environment of both liquid and solid samples. In the first half of this dissertation research, solid state NMR has provided experimental evidence for turbostratic disorder in layered covalent organic solids. Additionally, comparison with candidate structures allowed a proposed correction to the accepted structure of Covalent Organic Framework-5. The second half of the dissertation work emphasized liquid NMR spectroscopy applied to doped iron oxides (IOs). In particular, the effect of IOs on water proton T2 relaxation times were determined as a measure of contrast agent efficacy. Both types of data lend towards structure elucidation for material efficiency.
3

Towards Computational Modeling of Two-dimensional Covalent Organic Frameworks

Raptakis, Antonios 25 January 2022 (has links)
Kovalente organische Frameworks (COFs) haben in den letzten Jahren aufgrund ihrer potenziellen Anwendungen in verschiedenen Bereichen großes Interesse hervorgerufen. Obwohl die Eigenschaften der synthetisierten Materialien empfindlich von den Eigenschaften der entsprechenden organischen Liganden abhängen, ist der Beitrag der einzelnen Bausteine zu den Kristalleigenschaften nicht eindeutig definiert. In dieser Arbeit werden die elektronischen und mechanischen Eigenschaften von einschichtigen zweidimensionalen (2D) COFs untersucht, wobei der Schwerpunkt auf den molekularen Bausteinen liegt. Zunächst wurde die Kristallstruktur als Hooke'sches Federnetzwerk angenommen, und analytische Formeln für 2D-COFs mit quadratischer und hexagonaler Gittertopologie wurden abgeleitet, wobei eine Vorhersage des Kompressionsmoduls aus der Berechnung der Monomer-Federkonstante angestrebt wurde. Alle geschätzten Werte für Moleküle und periodische Strukturen wurden mit der DFTB-Methode (Density Functional based Tight-Binding) berechnet. Benchmarking-Berechnungen mit der Dichtefunktionaltheorie (DFT) wurden eingesetzt, um die Anwendbarkeit der semiempirischen Methode zu überprüfen. In einem zweiten Schritt wurden Methoden vorgeschlagen, um die elektronische Bandstruktur und die elektronischen Eigenschaften von COFs zu verändern, wie z.B. die Änderung von Bindungen oder Linkern, Seitengruppen oder Funktionalisierung und die Erhöhung der Massendichte. Die verschiedenen Methoden ergeben unterschiedliche Eigenschaften der resultierenden Strukturen. Darüber hinaus wurden mehrere Polymere durch periodische Fortsetzung in einer oder zwei Dimensionen auf der Grundlage derselben molekularen Bausteine modelliert. Es wurde ein zweistufiges System auf der Grundlage des Tight-Binding-Ansatzes vorgeschlagen, und dessen Parameter wurden mit Hilfe der Bandoberkante des Valenzbandes und der Bundunterkante des Leitungsbandes abgeschätzt. Ein maschinelles Lernverfahren wurde eingesetzt, um die elektronische Bandlücke auf der Grundlage der gleichen Kernmonomere vorherzusagen. Interessanterweise erbt das 2D-COF die elektronische Lücke von der monomeren Einheit mit der niedrigeren elektronischen Energiedifferenz zwischen besetztem und unbesetztem Band. Schließlich wurde die Protonentautomerisierung in zwei sehr häufig verwendeten Kernmonomeren für 2D-COFs, Porphyrin und Phthalocyanin, und ihren Derivaten untersucht. Die Freie-Energie-Oberfläche wurde mit Quanten-Molekulardynamik-Simulationen durch Kombination von DFTB und Metadynamik berechnet. Durch die Analyse der Potenzialporträts werden die strukturellen Symmetrien des Moleküls in Protonentransferreaktionen widergespiegelt. Ich erwarte, dass die Ergebnisse dieser Arbeit Einsichten für die Synthese von 2D COFs geben werden, welche auf optimierte elektronische Eigenschaften mit hoher struktureller Stabilität abzielt.:ABSTRACT ZUSAMMENFASSUNG 1. INTRODUCTION Motivation Nomenclatures Experimental characterization and computational studies Objectives and outline 2. THEORETICAL AND COMPUTATIONAL BACKGROUND Many-body system Density Functional Theory (DFT) Kohn-Sham auxilary approach and the computational application of DFT Exchange-correlation functional Hybrid functionals Basis-set Pseudo-potentials Tight-binding model Density Functional based Tight-binding model (DFTB) Slater-Koster approach Slater-Koster sets in DFTB Molecular Dynamics and Metadynamics Classical Molecular Dynamics (MD) Quantum Molecular Dynamics (QMD) Metadynamics(MTD) 3. PREDICTING THE BULK MODULUS Conceptualization Equivalent spring constant Two dimensional bulk modulus Computational details COFs with square lattice type Models Molecular Spring constant Single layer 2D COFs COFs with hexagonal lattice type Models Single layer 2D COFs Synopsis 4. ENGINEERING THE ELECTRONIC PROPERTIES Computational details COFs with square lattice type Models Benchmarking of different methods π -conjugated COFs COFs with hexagonal topology Models π -conjugated COFs Synopsis PREDICTING THE ELECTRONIC BAND GAP Conceptualization Models Computational protocol 1D- and 2D-polymer Comparing the cores Predicting the gap Synopsis 6 SIMULATING THE PROTON TAUTOMERIZATION Models Collective variables (CVs) Computational protocol FES portraits and energy barriers Synopsis 7 CONCLUSIONS AND OUTLOOK APPENDIX A APPENDIX B APPENDIX C BIBLIOGRAPHY SCIENTIFIC OUTPUT ACKNOWLEDGEMENTS
4

Hydrogen Storage In Nanostructured Materials

Assfour, Bassem 25 March 2011 (has links) (PDF)
Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn 2+) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its total hydrogen uptake at 77 K and 100 bar amounts to 7.8 wt.% comparable to the total uptake reported of MOF-177 (10 wt.%), which is a benchmark material for high pressure and low temperature H2 adsorption. Covalent organic frameworks are new class of nanoporous materials constructed solely from light elements (C, H, B, and O). The number of adsorption sites as well as the strength of adsorption are essential prerequisites for hydrogen storage in porous materials because they determine the storage capacity and the operational conditions. Currently, to the best of our knowledge, no experimental data are available on the position of preferential H2 adsorption sites in COFs. Molecular dynamics simulations were applied to determine the position of preferential hydrogen sites in COFs. Our results demonstrate that H2 molecule adsorbed at low temperature in seven different adsorption sites in COFs. The calculated adsorption energies are about 3 kJ/mol, comparable to that found for MOF systems. The gravimetric uptake for COF-108 reached 4.17 wt.% at room temperature and 100 bar, which makes this class of materials promising for hydrogen storage applications.
5

Studies On Electrical Contact Resistance And Coefficient Of Friction Across Sliding Electrical Contacts

Prasad, V Siddeswara 02 1900 (has links) (PDF)
Simultaneous measurement of electrical contact resistance (ECR) and coefficient of friction (COF) at the sliding interface is essential to assess the performance of selected material contact pairs for the transfer of current from stationary member to moving member (or vice-versa). Low and stable values of ECR and COF are desirable during the intended operating life of the contact members. These parameters may change with respect to time as a consequence of change in the surface properties of contact members due to their relative movement. Hence experimental investigations have been conducted to study the variation of ECR and COF while different riders sliding on copper and brass flat samples in different environments. As a part of the experimental investigation, a reciprocating sliding setup is designed and developed to study the variation of ECR and COF in terms of normal force, sliding speed, current and environment. The details of the experimental setup are described along with its construction and operation. The sample preparation, instrumentation, data acquisition and presentation are explained in detail. The variations of ECR and COF at different normal forces, currents and sliding speeds by moving OFHC copper, brass, silver, Ag10Cu and Ag20Cu riders on OFHC copper and brass flat samples in vacuum, argon, nitrogen and air are studied in detail. Studies are also conducted to evaluate the performance of metallic contacts under lubricated condition using general purpose lubricating oils of different viscosity. Metallic contacts show a decrease in ECR with increase in normal force at all sliding speeds in all media. Sliding metallic contacts show a significant decrease in both ECR and COF during the initial sliding cycles at constant normal force in all media. Surface roughness of flat sample is found to have a significant effect on both ECR and COF in all media. Wear of rider is found to be significant as compared to wear of flat samples. Metallic contacts show an inverse relationship between ECR and COF in all media under mild wear regime (0.2< COF≤ 0.4). ECR and COF of sliding metallic contacts are independent of current (≤ 4A) in mild wear regime in all media. Reasonably low values of ECR and COF are observed for prolonged duration with lubricants having low viscosity. The presence of wear fragments at the sliding zone is found to have significant effect on both ECR and COF in all media. Low values of ECR are observed while copper rider sliding on brass sample as compared to silver rider under same operating conditions. Significant amount of metal transfer is observed with silver based riders sliding on copper and brass flat samples in different media. The present investigations are useful in understanding the contact behaviour of copper and brass flat samples for similar and dissimilar riders sliding on them in various environments.
6

Design and Synthesis of Dehydrobenzoannulene Based Covalent Organic Frameworks

Crowe, Jonathan William 30 August 2017 (has links)
No description available.
7

Tectonique moléculaire : vers la formation de réseaux chiraux par coordination ou liaisons covalentes / Molecular tectonic : toward the formation of chiral network using coordination or covalent bonds

Florent, Maxime 13 December 2017 (has links)
L’objectif de ce travail fut la conception d’édifices périodiques cristallins chiraux formés par auto-assemblage de briques de construction préprogrammées appelées (métalla)tectons via des liaisons de coordination (MOF) ou des liaisons covalentes (COF). Dans le premier chapitre, la synthèse de complexes cationiques d’iridium(III) cyclométallés racémiques et énantiopures substitués par des groupements pyridines ou acides benzoïques a été mise au point. Ces métallatectons ont permis l’obtention de nouveaux réseaux hétérométalliques par auto-assemblage avec divers cations métalliques. Un réseau homochiral bi-dimensionnel de type grille a pu être obtenu. Le second chapitre s’intéresse à la formation de COFs cristallins. De nouveaux tectons portant deux unités catécholates reliées par une chaîne polyéthylèneglycol ont été synthétisés afin de générer des réseaux homochiraux hélicoïdaux. Ces tectons, en présence d’acide borique et d’une base alcaline, devant permettre l’enroulement de la chaîne polyéthylèneglycol, ont cependant uniquement mené à la formation d’entités oligomériques. / The aim of this PhD work was to design new homochiral molecular networks using either coordination (MOF) or covalent bonds (COF) applying the concepts of molecular tectonics that deal with the formation of crystalline periodic architectures formed upon self-assembly of preprogrammed building blocks known as (metalla)tectons. In the first part, the synthesis of cationic cyclometalated iridium(III) complexes substituted with pyridine or benzoic acid derivatives, as racemic mixture or enantiomerically pure, has been carried out. Upon self-assembly of those metallatectons with distinct metallic cations, heterometallic coordination networks were obtained. Notably, a 2-D grid-type homochiral coordination network was successfully synthetized. The second part focused on the generation of homochiral helical crystalline covalent networks. Novel organic tectons using two catecholate units connected by a polyethyleneglycol chain have been synthesized. Reaction of these tectons with boric acid and an alkaline base, enabling the chain winding around the alkaline cation, has only led to the formation of oligomeric architectures.
8

A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton

Feng, Xinliang, Zhuang, Xiaodong, Zhao, Wuxue, Zhang, Fan, Cao, Yu, Liu, Feng, Bia, Shuai 21 July 2017 (has links) (PDF)
The synthesis of crystalline two-dimensional (2D) covalent organic frameworks (COFs) with fully unsaturated carbon–carbon backbones via a solution approach remains a great challenge. In this work, we report the first example of an olefin-linked 2D conjugated COF using a Knoevenagel polycondensation reaction of 1,4-phenylene diacetonitrile and three armed aromatic aldehyde. The resulting 2D poly(phenelyenevinylene) framework (2DPPV) possesses a sheet morphology, and a crystalline layered structure featuring a fully sp2-bonded carbon skeleton with pendant cyanide groups. Its unique alternating structure with a serrated configuration has been essentially evaluated using HR-TEM TEM analysis, nitrogen physisorption measurements, PXRD studies and theoretical simulations. Upon thermal and activation treatments, the as-prepared 2DPPV can be facilely converted into porous carbon nanosheets with large specific surface areas of up to 880 m2 g−1 which exhibit an excellent electrochemical performance as supercapacitor electrodes and electrocatalysts for the oxygen reduction reaction. This represents an economic non-template approach to 2D porous carbon materials for energy-related applications.
9

A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton

Feng, Xinliang, Zhuang, Xiaodong, Zhao, Wuxue, Zhang, Fan, Cao, Yu, Liu, Feng, Bia, Shuai 21 July 2017 (has links)
The synthesis of crystalline two-dimensional (2D) covalent organic frameworks (COFs) with fully unsaturated carbon–carbon backbones via a solution approach remains a great challenge. In this work, we report the first example of an olefin-linked 2D conjugated COF using a Knoevenagel polycondensation reaction of 1,4-phenylene diacetonitrile and three armed aromatic aldehyde. The resulting 2D poly(phenelyenevinylene) framework (2DPPV) possesses a sheet morphology, and a crystalline layered structure featuring a fully sp2-bonded carbon skeleton with pendant cyanide groups. Its unique alternating structure with a serrated configuration has been essentially evaluated using HR-TEM TEM analysis, nitrogen physisorption measurements, PXRD studies and theoretical simulations. Upon thermal and activation treatments, the as-prepared 2DPPV can be facilely converted into porous carbon nanosheets with large specific surface areas of up to 880 m2 g−1 which exhibit an excellent electrochemical performance as supercapacitor electrodes and electrocatalysts for the oxygen reduction reaction. This represents an economic non-template approach to 2D porous carbon materials for energy-related applications.
10

Hydrogen Storage In Nanostructured Materials

Assfour, Bassem 28 February 2011 (has links)
Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn 2+) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its total hydrogen uptake at 77 K and 100 bar amounts to 7.8 wt.% comparable to the total uptake reported of MOF-177 (10 wt.%), which is a benchmark material for high pressure and low temperature H2 adsorption. Covalent organic frameworks are new class of nanoporous materials constructed solely from light elements (C, H, B, and O). The number of adsorption sites as well as the strength of adsorption are essential prerequisites for hydrogen storage in porous materials because they determine the storage capacity and the operational conditions. Currently, to the best of our knowledge, no experimental data are available on the position of preferential H2 adsorption sites in COFs. Molecular dynamics simulations were applied to determine the position of preferential hydrogen sites in COFs. Our results demonstrate that H2 molecule adsorbed at low temperature in seven different adsorption sites in COFs. The calculated adsorption energies are about 3 kJ/mol, comparable to that found for MOF systems. The gravimetric uptake for COF-108 reached 4.17 wt.% at room temperature and 100 bar, which makes this class of materials promising for hydrogen storage applications.

Page generated in 0.0302 seconds