• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 8
  • 8
  • 3
  • 2
  • Tagged with
  • 83
  • 83
  • 35
  • 19
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effects of tidal bores on turbulent mixing : a numerical and physical study in positive surges

Simon, Bruno 24 October 2013 (has links) (PDF)
Tidal bores are surge waves propagating upstream rivers as the tide rushes into estuaries. They induce large turbulences and mixing of the river and estuary flow of which effects remain scarcely studied. Herein, tidal bores are investigated experimentally and numerically with an idealised model of positive surges propagating upstream an initially steady flow. The experimental work estimated flow changes and typical turbulent length scale evolution induced by undular bores with and without breaking roller. The bore passage was associated with large free surface and flow velocity fluctuations, together with some variations of the integral turbulent scales. Coherent turbulent structures appeared in the wake of leading wave near the bed and moved upward into the water column during the bore propagation. The numerical simulations were based on previous experimental work on undular bores. Some test cases were realised to verify the accuracy of the numerical methods. The results gave access to the detailed flow evolution during the bore propagation. Large velocity reversals were observed close to the no-slip boundaries. In some configurations, coherent turbulent structures appeared against the walls in the wake of the bore front.
72

Experimental Study of Turbulent Flow over Inclined Ribs in Adverse Pressure Gradient

Tsikata, Jonathan Mawuli 20 December 2012 (has links)
This thesis is an experimental study of turbulent flows over smooth and rough walls in a channel that consists of an upstream parallel section to produce a fully developed channel flow and a diverging section to produce an adverse pressure gradient (APG) flow. The roughness elements used were two-dimensional square ribs of nominal height k = 3 mm. The ribs were secured to the lower wall of the channel and spaced to produce the following three pitches: 2k, 4k and 8k, corresponding to d-type, intermediate and k-type rough walls, respectively. For each rough wall type, the ribs were inclined at 90°, 45° and 30° to the approach flow. The velocity measurements were performed using a particle image velocimetry technique. The results showed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. The level of turbulence production and Reynolds stresses were significantly increased by roughness beyond the roughness sublayer. It was observed that the population, sizes and the level of organization of hairpin vortices varied with roughness and more intense quadrant events were found over the smooth wall than the rough walls. APG reinforced wall roughness in augmenting the equivalent sand grain roughness height, turbulence production and Reynolds stresses. APG also reduced the sizes of the hairpin packets but strengthened the quadrant events in comparison to the results obtained in the parallel section. The secondary flow induced by inclined ribs significantly altered the distributions of the flow characteristics across the span of the channel. Generally, the mean flow was less uniform close to the trailing edge of the ribs compared to the flows at the mid-span and close to the leading edge of the ribs. The Reynolds stresses and hairpin packets were distinctly larger close to the trailing edge of the ribs. Rib inclination also decreased the drag characteristics and significantly modified the distributions of the Reynolds stresses and quadrant events. In the parallel section, the physical sizes of the hairpin packets were larger over 45° ribs whereas in the diverging section, the sizes were larger over perpendicular ribs.
73

Purely elastic shear flow instabilities : linear stability, coherent states and direct numerical simulations

Searle, Toby William January 2017 (has links)
Recently, a new kind of turbulence has been discovered in the flow of concentrated polymer melts and solutions. These flows, known as purely elastic flows, become unstable when the elastic forces are stronger than the viscous forces. This contrasts with Newtonian turbulence, a more familiar regime where the fluid inertia dominates. While there is little understanding of purely elastic turbulence, there is a well-established dynamical systems approach to the transition from laminar flow to Newtonian turbulence. In this project, I apply this approach to purely elastic flows. Laminar flows are characterised by ordered, locally-parallel streamlines of fluid, with only diffusive mixing perpendicular to the flow direction. In contrast, turbulent flows are in a state of continuous instability: tiny differences in the location of fluid elements upstream make a large difference to their later locations downstream. The emerging understanding of the transition from a laminar to turbulent flow is in terms of exact coherent structures (ECS) — patterns of the flow that occur near to the transition to turbulence. The problem I address in this thesis is how to predict when a purely elastic flow will become unstable and when it will transition to turbulence. I consider a variety of flows and examine the purely elastic instabilities that arise. This prepares the ground for the identification of a three-dimensional steady state solution to the equations, corresponding to an exact coherent structure. I have organised my research primarily around obtaining a purely elastic exact coherent structure, however, solving this problem requires a very accurate prediction of the exact solution to the equations of motion. In Chapter 2 I start from a Newtonian ECS (travelling wave solutions in two-dimensional flow) and attempt to connect it to the purely elastic regime. Although I found no such connection, the results corroborate other evidence on the effect of elasticity on travelling waves in Poiseuille flow. The Newtonian plane Couette ECS is sustained by the Kelvin-Helmholtz instability. I discover a purely elastic counterpart of this mechanism in Chapter 3, and explore the non-linear evolution of this instability in Chapter 4. In Chapter 5 I turn to a slightly different problem, a (previously unexplained) instability in a purely elastic oscillatory shear flow. My numerical analysis supports the experimental evidence for instability of this flow, and relates it to the instability described in Chapter 3. In Chapter 6 I discover a self-sustaining flow, and discuss how it may lead to a purely elastic 3D exact coherent structure.
74

Dynamics of turbulent western boundary currents at low latitudes, a numerical study / La dynamique des courants turbulents de bord ouest : étude numérique

Akuetevi, Cataria Quam Cyrille 20 February 2014 (has links)
Les courants turbulents de bord ouest sont l'un des phénomènes les plus dominants des océans, il en existe aux faibles latitudes aussi. Ils sont caractérisés par une dynamique très turbulente avec une forte production d'énergie cinétique, et une forte variabilité interne. Plusieurs régions existent où les courants de bord ouest se rétrofléchissent (décollage de la côte) pour former des structures cohérentes: des anticyclones, des bursts (arrachements) et des dipoles. Circulant le long de la côte, les courants de bord ouest interagissent très fortement avec le bord ouest et la bathymétrie et sont donc un problème de couche limite. Cependant aucune étude du point de vue de la théorie de couche limite n'a été jamais été faite. Cette thèse aborde le problème d'un point de vue de couche limite par l'utilisation d'un modèle idéalisé "shallow water" à très haute résolution (2.5km) afin d'isoler et de comprendre les processus. Les résultats sont ensuite appliqués à des sorties de modèle réaliste Drakkar (~10km) basé sur le code NEMO. Le courant de Somali est ensuite pris pour cette application. / Strong western boundary currents are one of dominant features of the world oceans, also at low latitudes. They exhibit a turbulent dynamics and their region is a source of strong kinetic energy production and internal variability of the worlds oceans. Several places exists where the western boundary currents retrofect (i.e separation from the coast) and generate coherent structures as anticyclonic eddies, bursts and dipoles. The dynamics of turbulent western boundary currents has so far not been extensively studied in the viewpoint of turbulent boundary-layer theory. The approach followed in this thesis is to use a fine resolution (2.5km) reduced-gravity shallow water model to understand the turbulent boundary-layer processes and then apply these findings to the Ocean General Circulation Model NEMO in the Drakkar configuration (~10km). The case of the Somali Currentis considered for this application.
75

Linear Stability Models for Reacting Mixing Layers

Shivakanth Chary, P January 2017 (has links) (PDF)
We develop a physics-based reduced-order model of the aero-acoustic sound sources in reacting mixing layers as a method for fast and accurate predictions of the radiated sound. Instabilities in low-speed mixing layers are known to be dominated by the traditional Kelvin–Helmholtz (K–H)-type “central” mode, which is expected to be superseded by the “outer” modes as the chemical-reaction-based heat-release modifies the mean density, yielding new peaks in the density-weighted vorticity profiles. Although, these outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus primarily, when the mixing layer is supersonic, but also report subsonic cases. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean density of the fast (oxidizer) or slow (fuel) side. In the linearized model that we use, the mean flow are laminar solutions of two-dimensional compressible boundary layers with an imposed composite turbulent spread rate, which we show to correctly predict the growth of instability waves by saturating them earlier, similar to in non-linear calculations, but obtained here via solving the linear parabolized stability equations (PSE). The chemical reaction is modeled via a single-step, single-product overall process which introduces a heat release term in the mean temperature equation. As the flow parameters are varied, modes that are unstable on the slow side are shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound, obtained directly from the PSE solutions, seems to be relatively unaffected by a variation of mixture equivalence ratio, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth. For subsonic mixing layers, the sensitivity of central mode is explored, which in addition requires an acoustic analogy based method (e.g. the Lilley–Goldstein equations) to predict the sound from the linearized PSE sources, as used here, unlike in supersonic cases.
76

Analyse des structures des écoulements et des instabilités développées par un rideau d'air cisaillé latéralement par un courant externe : application au cas des meubles frigorifiques de vente / Analysis of flow structures and instabilities developed by and air curtain sheared laterally by an external stream : application to the case of refrigerated display cabinets

Kaffel, Ahmed 16 February 2017 (has links)
Dans cette étude, le comportement aérodynamique du jet pariétal (Re = 8000) cisaillé latéralement par un courant de perturbation externe (ELS) de profil de vitesse uniforme (Ulf) a été étudié et analysé. Les expérimentations ont été réalisées par PIV et LDV sur une maquette aéraulique isotherme à échelle réduite d’un meuble frigorifique de vente. L’étude est centrée sur la région du jet située à proximité de la section de soufflage (x/e < 10) qui correspond à la zone dans laquelle se développent les instabilités et le processus de transition vers la turbulence. L’analyse des résultats obtenus avec et sans perturbation a mis en évidence que la perturbation entraîne une diminution significative du pouvoir d’entraînement du jet, une forte décroissance de la vitesse moyenne maximale, un faible épanouissement du jet et une augmentation globale des valeurs des moments d’ordre deux de toutes les composantes des contraintes de Reynolds. L’analyse par PIV résolue en temps (10 kHz) montre une topologie déformée et allongée des structures de Kelvin-Helmholtz (K-H) pour (Ulf = 0,5 ms-1) et détachée pour (Ulf = 1 ms-1). Les résultats de l’interaction mutuelle ente les couches interne et externe indiquent que le courant ELS brise partiellement le mécanisme de formation des dipôles de vortex qui deviennent irréguliers et moins prédictifs, ce qui conduit à l’allongement de la zone de transition et retarde donc l’apparition de la zone auto-similaire du jet. D’après la technique POD, l’ELS engendre une redistribution énergétique entre les modes. Le courant ELS affecte également les instabilités K-H en perturbant leur organisation bidimensionnelle, leur topologie, leur alignement et leur fréquence de passage mettant en évidence l’effet inhibiteur exercé sur le développement des structures primaires. Les corrélations spatiales Rvv reflètent la diminution des échelles de longueur dans le cas d’un jet perturbé. / In this study, the aerodynamic behavior of the plane wall jet (Re = 8000) sheared laterally by an external lateral stream (ELS) of a uniform velocity profile (Ulf) was studied and analyzed. The experiments were carried out by PIV and LDV on a reduced-scale isothermal aeraulic model of a refrigerated display cabinet. The study focuses on the near-field region of the jet (x / e <10) which corresponds to the zone of transition to turbulence and onset and development of instabilities. The results obtained with and without perturbation showed a significant decrease in the entrainment rate, a strong decrease in the maximum velocity decay rate, a lower jet expansion and an overall increase in the values of second order moments of the Reynolds stress components. The time-resolved PIV analysis (10 kHz) shows a distorted and elongated topology of the Kelvin-Helmholtz (K-H) structures for (Ulf = 0,5 ms-1) and a detached topology for (Ulf = 1 ms-1). The results of the mutual interaction between the inner and outer layers indicate that the ELS partially breaks the vortex dipole formation mechanism which becomes irregular and less predictive, leading to the elongation of the transitional region and a lag effect in the beginning of the self-similarity region. POD technique reveals the role of the ELS in redistributing energy between the modes. The ELS also affects the K-H instabilities by disrupting their two-dimensional organization, topology, alignment and shedding frequency, highlighting the inhibitory effect exerted on the development of primary structures. The spatial correlations Rvv reflect the decrease of the length scales in the case of a perturbed jet.
77

Etude numérique de la production et de la propagation d'ondes non linéaires dans les jets supersoniques / Numerical study of the generation and propagation of nonlinear acoustic waves in supersonic jets

Pineau, Pierre 30 November 2018 (has links)
Dans ce travail de thèse, les mécanismes à l'origine de la formation des chocs associés à la perception de crackle proche de jets supersoniques axisymétriques sont étudiés à l'aide de simulations numériques. Dans ces simulations, les équations de Navier-Stokes instationnaires et compressibles sont résolues en coordonnées cylindriques à l'aide de différences finies d'ordre élevé peu dissipatives et peu dispersives. Quatre jets temporels à des nombres de Mach de 2 et~3 et à des nombres de Reynolds compris entre 3125 et 50000 sont simulés dans un premier temps. Des ondes acoustiques de forte amplitude présentant d'importants gradients de pression sont mises en évidence à proximité des jets. Elles se forment par un mécanisme de raidissement à la source qui est étudié par le calcul de moyennes conditionnelles synchronisées autour des pics de pression en champ proche. Ces moyennes montrent un lien direct entre ces ondes non linéaires et la convection de structures cohérentes à desvitesses supersoniques dans les couches de~mélange. L'influence de la température sur la formation de ces ondes est examinée dans un second temps par le calcul de cinq jets temporels à des rapports de température de 1, 2 et 4, et à des nombres de Mach acoustique compris entre 2 et 4. À vitesse d'éjection constante, les niveaux de bruit produits par les jets chauds sont moins élevés que ceux du jet isotherme, mais les ondes non linéaires qu'ils rayonnent sont peu affectées par une hausse de température. À nombre de Mach constant, les niveaux augmentent avec la température, de même que l'asymétrie des fluctuations de pression, traduisant un renforcement du caractère non linéaire des ondes rayonnées. Ces variations pourraient être dues à celles de la vitesse de convection des structures cohérentes, qui augmente de façon significative avec la température lorsque le nombre de Mach est constant, mais diminue légèrement à vitesse~constante. Finalement, trois simulations de jets spatiaux isothermes et chauds à un nombre de Mach acoustique de 2 et à des nombres de Reynolds de 12500 et 50000 sont mises en \oe uvre. Des ondes de Mach présentant d'importants gradients de pression sont visibles au voisinage direct des jets. La formation de ces ondes est liée, comme dans le cas des jets temporels, à la convection supersonique de structures cohérentes dans les couches de mélange. Le champ lointain acoustique est enfin déterminé par des méthodes d'extrapolation linéaire et non linéaire. Lorsque la propagation est non linéaire, un raidissement additionnel des fronts d'onde est constaté en champ lointain. / Numerical simulations are carried out with the aim of investigating the formation of nonlinear steepened waves at the origin of crackle in the near acoustic field of supersonic jets. In these simulations, the compressible Navier-Stokes equations are solved in cylindrical coordinates using high-order low-dissipative and low-dispersive finite difference schemes.Four temporally-developing isothermal round jets are first simulated at Mach numbers of~2 and~3 and at Reynolds numbers ranging from 3,125 to 50,000. Strong acoustic waves containing sharp pressure variations are observed in the vicinity of the jets. Their formation process is described by the computation of conditional averages which are triggered by the detection of strong pressure peaks in the near field. Such steepened waves are then shown to be produced by the supersonic motion of coherent structures inside the jet shear layers.Temperature effects are then investigated by considering five temporal round jets at temperature ratios of 1, 2 and~4 and at acoustic Mach numbers of 2, 2.8 and 4. For a given jet speed, the sound levels produced by the hot jets are lower than those of the isothermal one. However, the properties of the steepened waves they generate are not significantly affected by a rise of temperature. On the contrary, when the Mach number is held constant, pressure levels are higher at high temperature. The skewness and kurtosis factors of pressure fluctuations are also increased, which indicates a strengthening of the asymmetry and the intermittency of the pressure fluctuations. It is likely that the influence of temperature on these waves results from the variations of the convection speed, which is found to significantly increase with temperature at constant Mach number, but to slightly decrease at constant jet speed.Finally, three simulations of spatially-developing axisymmetric, isothermal and hot jets at a Mach number of~2 and at Reynolds numbers of 12500 and 50000 are performed. Strong Mach waves possessing the distinctive features of crackle are visible in the near vicinity of the jets. As observed for temporal simulations, their formations are associated with the supersonic motion of large-scale coherent structures inside the jet shear layers. The far acoustic field is determined using linear as well as nonlinear extrapolation methods. When nonlinear propagation effects are taken into account, a further steepening of the wavefronts is observed with increasing propagation distance.
78

Elasticity induced instabilities

Manish Kumar (9575750) 27 April 2022 (has links)
<p>The present dissertation focuses on two themes: (i) elastic instability of flow and (ii) elastic instability of microscopic filaments.</p> <p><br></p> <p>(i) The presence of macromolecules often leads to the viscoelastic nature of industrial and biological fluids. The flow of viscoelastic fluids in porous media is important in many industrial, geophysical, and biological applications such as enhanced oil recovery, groundwater remediation, biofilm formation, and drug delivery. The stretching of polymeric chains as the viscoelastic fluid passes through the microstructure of the porous media induces large elastic stresses, which leads to viscoelastic instability at the Weissenberg number greater than a critical value, where the Weissenberg number quantifies the ratio of elastic to viscous forces. Viscoelastic instability can lead to a time-dependent chaotic flow even at negligible inertia, which is sometimes also known as elastic turbulence due to its analogous features to traditional inertial turbulence. In the present thesis, we investigate the pore-scale viscoelastic instabilities and the flow states induced by the instabilities in symmetric and asymmetric geometries. We found that the topology of the polymeric stress field regulates the formation of different flow states during viscoelastic instabilities. Viscoelastic instability-induced flow states exhibit hysteresis due to the requirement of a finite time for the transformation of polymeric stress topology. Further, we study viscoelastic flows through ordered and disordered porous geometries and explore the effect of viscoelastic instability on sample-scale transport properties. Viscoelastic instability enhances transverse transport in ordered porous media and longitudinal transport in disordered porous media. We also derive a relationship between the polymeric stress field and the Lagrangian stretching field. The Lagrangian stretching field helps to predict the feature of flow states and transport in complex flows. The experimental measurement of the polymeric stress field is extremely challenging. The framework established here can be used to obtain the topology of the polymeric stress field directly from the easily measured velocity field.  </p> <p><br></p> <p><br></p> <p>(ii) The interaction between flow and elastic filaments plays an important role in sperm and bacterial motility and cell division. The sperm cells of many organisms use long elastic flagellum to propel themselves and also face complex flows and boundaries during their search for egg cells. Strong flows have the potential to mechanically inhibit flagellar motility through elastohydrodynamic interactions. We explore the effects of an extensional flow on the buckling dynamics of sperm flagella through detailed numerical simulations and microfluidic experiments. Compressional fluid forces lead to rich buckling dynamics of the sperm flagellum beyond a critical dimensionless sperm number, which represents the ratio of viscous force to elastic force. Shear flows navigate the sperm cells in complex geometries and flows. We have also studied the effect of flow strength and flagellar elastic deformation on the sperm trajectory in simple shear and Poiseuille flows.</p>
79

Analysis and Compression of Large CFD Data Sets Using Proper Orthogonal Decomposition

Blanc, Trevor Jon 01 July 2014 (has links) (PDF)
Efficient analysis and storage of data is an integral but often challenging task when working with computation fluid dynamics mainly due to the amount of data it can output. Methods centered around the proper orthogonal decomposition were used to analyze, compress, and model various simulation cases. Two different high-fidelity, time-accurate turbomachinery simulations were investigated to show various applications of the analysis techniques. The first turbomachinery example was used to illustrate the extraction of turbulent coherent structures such as traversing shocks, vortex shedding, and wake variation from deswirler and rotor blade passages. Using only the most dominant modes, flow fields were reconstructed and analyzed for error. The reconstructions reproduced the general dynamics within the flow well, but failed to fully resolve shock fronts and smaller vortices. By decomposing the domain into smaller, independent pieces, reconstruction error was reduced by up to 63 percent. A new method of data compression that combined an image compression algorithm and the proper orthogonal decomposition was used to store the reconstructions of the flow field, increasing data compression ratios by a factor of 40.The second turbomachinery simulation studied was a three-stage fan with inlet total pressure distortion. Both the snapshot and repeating geometry methods were used to characterize structures of static pressure fluctuation within the blade passages of the third rotor blade row. Modal coefficients filtered by frequencies relating to the inlet distortion pattern were used to produce reconstructions of the pressure field solely dependent on the inlet boundary condition. A hybrid proper orthogonal decomposition method was proposed to limit burdens on computational resources while providing high temporal resolution analysis.Parametric reduced order models were created from large databases of transient and steady conjugate heat transfer and airfoil simulations. Performance of the models were found to depend heavily on the range of the parameters varied as well as the number of simulations used to traverse that range. The heat transfer models gave excellent predictions for temperature profiles in heated solids for ambitious parameter ranges. Model development for the airfoil case showed that accuracy was highly dependent on modal truncation. The flow fields were predicted very well, especially outside the boundary layer region of the flow.
80

Lagrangian coherent structures and physical processes of coastal upwelling / Structures lagrangiennes cohérentes et processus physiques de l'upwelling côtier

El aouni, Anass 24 September 2019 (has links)
L’étude des processus physiques d’un système d’upwelling est essentielle pour comprendre sa variabilité actuelle et ses changements passés et futurs. Cette thèse présente une étude interdisciplinaire du système d’upwelling côtier à partir de différentes données acquises par satellite, l’accent étant mis principalement sur le système d’upwelling d’Afrique du Nord-Ouest (NWA). Cette étude interdisciplinaire aborde (1) le problème de l’identification et de l’extraction automatiques du phénomène d’upwelling à partir d’observations satellitaires biologiques et physiques. (2) Une étude statistique de la variation spatio-temporelle de l’upwelling de la NWA tout au long de son extension et de ses différents indices d’upwelling. (3) Une étude des relations non linéaires entre le mélange de surface et l’activité biologique dans les régions d’upwelling. (4) études lagrangiennes de tourbillons cohérents; leurs propriétés physiques et identification automatique. (5) L’étude des transports effectués par les tourbillons lagrangiens de la NWA Upwelling et leur impact sur l’océan. / Studying physical processes of an upwelling system is essential to understand its present variability and its past and future changes. This thesis presents an interdisciplinary study of the coastal upwelling system from different satellite acquired data, with the main focus placed on the North West African (NWA) upwelling system. This interdisciplinary study covers (1) the problem of the automatic identification and extraction of the upwelling phenomenon from biological and physical satellite observations. (2) A statistical study of the spatio-temporal variation of the NWA upwelling throughout its extension and different upwelling indices. (3) A Study of the nonlinear relationships between the surface mixing and biological activity in the upwelling regions. (4) Lagrangian studies of coherent eddies; their physical properties and automatic identification. (5) The study of transport made by Lagrangian eddies off the NWA Upwelling and their impact on the open ocean. [...]

Page generated in 0.0771 seconds