Spelling suggestions: "subject:"cohesive one"" "subject:"cohesive done""
51 |
Effet des défauts d'adhésion sur la résistance mécanique des assemblages collés / Effect of adhesion defects on the mechanical resistance of bonded assembliesTaleb Ali, Mahfoudh 04 May 2018 (has links)
Le collage structural est une technique d’assemblage de plus en plus demandée aujourd’hui dans beaucoup de domaines comme l’automobile, l’aéronautique, l’aérospatial et dans d’autres domaines comme la construction, le sport et les loisirs. Cette technique très avantageuse, permet l’assemblage de matériaux semblables ou différents à l’aide d’un adhésif, la réduction importante du poids et la répartition uniforme des charges sur l’assemblage. Malgré ses avantages, le collage souffre encore de quelques inconvénients liés à l’existence de défauts dans les joints de colle. Parmi eux, il existe des défauts qui sont situés à l’interface colle/substrat comme un « kissing bond » ou un mauvais état de surface, qui restent indétectables ou difficilement détectables utilisant les techniques de contrôle non destructives. Donc, afin de prendre en compte l’existence des défauts d’adhésion dans les assemblages collés lors de la phase de conception, il est nécessaire de fournir un modèle analytique capable de prédire la propagation de fissure. Dans cette thèse, un modèle analytique qui prédit la propagation de fissure et qui évalue la résistance effective d’un assemblage collé contenant des défauts d’adhésion a été développé. Un défaut a généralement une géométrie complexe, et une étude générique est difficilement réalisable ce qui nous amène à considérer des géométries de défauts idéales. Le modèle a été vérifié par des expériences réalisées sur des éprouvettes DCB. Des simulations numériques utilisant la méthode de zone cohésive ont été réalisées également pour décrire plus complètement le processus de décohésion et simuler les essais expérimentaux. La dernière partie de ce travail a été dédiée à l’étude de la fissuration des éprouvettes en alliage de titane. Profitant de la collaboration avec Safran et Alphanov, les substrats ont subi un traitement de surface laser en laissant des zones non traitées. Le but de cette partie était de vérifier le modèle analytique proposé avec des configurations plus complexes. / Structural adhesive bonding has known an increasing use in many fields like aeronautics, aerospace and automotive and other fields like construction and sports. This very advantageous technique allows the assembly of similar or different materials using an adhesive, the significant reduction in weight and a uniform distribution of loads on the assembly. Despite its advantages, the bonding still suffers from some disadvantages related to the existence of defects in the bonded joints. Among them, there are defects that are located at the interface glue / substrate as "kissing bond" or poor surface due to bad surface treatment, which remain undetectable or hardly detectable using non-destructive control techniques. Therefore, in order to take into account the existence of adhesion defects in bonded assemblies during the design phase, it is necessary to provide an analytical model capable of predicting crack propagation and estimate the criticality of a defect. In this thesis, an analytical model that predicts crack propagation and evaluates the effective strength of a bonded assembly containing adhesion defects has been developed. A defect usually has a complex geometry, and a generic study is difficult to achieve, which leads us to consider ideal defect geometries. The model was verified by experiments performed on DCB specimens. Numerical simulations using the cohesive zone method were also performed to more fully describe the decohesion process and to simulate the experimental tests. The last part of this work was devoted to the study of titanium alloy assembly containing patterns. Taking advantage of the collaboration with Safran and Alphanov, the substrates underwent a laser surface treatment leaving untreated areas. The purpose of this part was to check the proposed analytical model with more complex configurations.
|
52 |
Modélisation micromécanique et identification inverse de l’endommagement par approches cohésives / Micromechanical modelling and inverse identification of damageBlal, Nawfal 12 September 2013 (has links)
Un modèle micromécanique est proposé pour une collection de zones cohésives insérées entre toutes les mailles d'une discrétisation de type éléments finis cohésifs-volumiques. Le principe de l'approche consiste à introduire un composite équivalent 'matrice-inclusions' comme une représentation de la discrétisation cohésive-volumique. Le modèle obtenu à l'aide de techniques d'homogénéisation (schéma de Hashin Shtrikman et approche de P. Ponte Castañeda) permet de décrire le comportement macroscopique élastique, fragile et ductile.Il est valable quel que soit le taux de triaxialité appliqué et la forme de la loi cohésive retenue, et permet de relier d'une façon explicite les propriétés macroscopiques du matériau aux différents paramètres cohésifs ainsi qu'à la densité de maillage.Un premier résultat est l'établissement d'un critère pratique permettant de définir les raideurs cohésives au regard de la souplesse additionnelle inhérente à l'utilisation des modèles de zones cohésives intrinsèques. L'extension du modèle au cas de la rupture fragile et ductile, permet d'obtenir d'autres critères pratiques pour calibrer les autres paramètres cohésifs (contrainte cohésive maximale, ouverture critique, énergie de fissuration, ...). L'utilisation couplée des critères obtenus permet une calibration inverse des paramètres de la loi cohésive en fonction des propriétés macroscopiques du matériau et de la taille de maillage. De fait il est possible de prédire un comportement homogène global indépendamment de la taille du maillage. / In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castañeda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density.First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy, ...). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length.The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage.
|
53 |
Développement d’une stratégie de modélisation du délaminage dans les structures composites stratifiées / Development of a strategy to model delamination in laminated composite structuresVandellos, Thomas 06 December 2011 (has links)
Les composites stratifiés de plis unidirectionnels en carbone/époxy sont fortement utilisés pour alléger les structures aéronautiques tout en conservant de bonnes propriétés structurales. Toutefois, les avantages de ce type de matériau ne sont pas encore pleinement exploités de par le manque de confiance accordée aux modèles de prévision de l’endommagement, dont notamment ceux concernant le délaminage. C’est pourquoi l’objectif de cette thèse était de développer une stratégie de modélisation du délaminage adaptée aux structures composites stratifiées. Cette stratégie s’est appuyée sur le développement d’un modèle de zone cohésive prenant en compte les ingrédients nécessaires à la bonne description de l’amorçage et de la propagation de la fissure : (i) un critère d’amorçage avec un renforcement en compression/cisaillement hors-plan, (ii) une loi de propagation décrivant l’évolution de la ténacité en fonction de la mixité de mode et (iii) la prise en compte du couplage inter/intralaminaire. Pour identifier ce nouveau modèle, une procédure d’identification efficace, s’appuyant sur un essai de traction sur plaque rainurée, a été mise en place. Cette procédure d’identification a permis de démontrer que la ténacité semble indépendante (i) de l’orientation des plis adjacents à l’interface et (ii) de l’empilement étudié. De même, pour décrire l’évolution de la ténacité, une nouvelle loi de propagation adaptée au matériau carbone/époxy a été proposée. Pour finir, la stratégie de modélisation, complétée par une stratégie de calcul, a été appliquée sur différents cas structuraux pour mettre en avant ses apports et ses premières limites. / The carbon/epoxy laminated composites of unidirectional plies are strongly used in order to reduce the weight of aeronautical structures while at the same time proposing good structural properties. However, the advantages of this kind of material are not fully exploited due to the lack of confidence in damage models, like ones concerning delamination. Then, the purpose of this work was the development of a strategy to model delamination in laminated composite structures. This strategy was based on the development of a cohesive zone model taking into account the ingredients necessary to the well description of the onset of delamination and the crack growth: (i) an onset criterion with an out-of-plan compression/shearing reinforcement, (ii) a propagation law describing the evolution of the fracture toughness as a function of mixed mode ratio and (iii) the inter/intralaminar coupling. To identify this new model, an efficient identification procedure, basing on a tensile test on notched specimen, has been proposed. This identification procedure has demonstrated that the fracture toughness seems to be independent of (i) the orientation of plies closed to the interface and (ii) the stacking sequence. Furthermore, to describe the evolution of the fracture toughness, a new propagation law adapted to carbon/epoxy material has been proposed. Finally, the strategy to model delamination, completed by a calculation strategy, has been applied on several structural cases to prove its contributions and its first limitations.
|
54 |
DELAMINATION AND FATIGUE ANALYSIS OF SILICON SOLAR CELLS USING FINITE ELEMENT METHODKrishnajith Theril (15404354) 04 May 2023 (has links)
<p>Fracture of silicon solar cells in photovoltaic (PV) modules are widely reported and a wellknown issue in the PV industry, since it is exposed to adverse climatic conditions and varying temperature loads. A commercial silicon solar cell is mainly composed of four different layers. This thesis investigates delamination failure and thermal fatigue failure due to alternating temperature loads using finite element method (FEM) simulation.</p>
<p><br></p>
<p>The delamination of the encapsulant (EVA) layer and the cell interface was simulated using</p>
<p>finite element (FE) simulations in the COMSOL Multiphysics software. The adhesion between the</p>
<p>layers were modeled using the cohesive zone model (CZM). The CZM parameters such as normal</p>
<p>strength and penalty stiffness were used for the bilinear traction-separation law for the cohesive</p>
<p>model in a 90-degree configuration. The critical energy release rate (𝐺𝐺𝑐𝑐) was experimentally calculated as one of the CZM parameters. A uniaxial tensile test of the upper layer of the cell was conducted to determine the material properties of the solar cell layers, and that information was</p>
<p>later used for FE simulations. To validate the simulation, we compared the peeling force graph</p>
<p>from the experiment and FE simulation, and it was found both graphs showed a maximum peeling</p>
<p>force of 120 N.</p>
<p><br></p>
<p>Finite element simulations were also conducted to predict the stress variations in the silicon</p>
<p>solar cell layer due to alternating temperatures. An alternating temperature function was developed</p>
<p>using triangular waveform equations in the COMSOL Multiphysics software. For this simulation,</p>
<p>a 3D model of the cell with a 90-degree peel arm was used, like in the peeling simulation. A</p>
<p>maximum stress of 7.31 x 10−3 𝑁/𝑚𝑚2 was observed on the encapsulant (EVA)/cell layer, but no</p>
<p>delamination was observed for the given temperature range. In future work, we plan to explore the</p>
<p>calculation of fatigue life using thermal simulation to predict the reliability of a solar cell.</p>
|
55 |
Prediction of Elastic Properties of a Carbon Nanotube Reinforced Fiber Polymeric Composite Material Using Cohesive Zone ModelingKulkarni, Mandar Madhukar 17 April 2009 (has links)
No description available.
|
56 |
Computational Micromechanics Analysis of Deformation and Damage Sensing in Carbon Nanotube Based NanocompositesChaurasia, Adarsh Kumar 03 May 2016 (has links)
The current state of the art in structural health monitoring is primarily reliant on sensing deformation of structures at discrete locations using sensors and detecting damage using techniques such as X-ray, microCT, acoustic emission, impedance methods etc., primarily employed at specified intervals of service life. There is a need to develop materials and structures with self-sensing capabilities such that deformation and damage state can be identified in-situ real time. In the current work, the inherent deformation and damage sensing capabilities of carbon nanotube (CNT) based nanocomposites are explored starting from the nanoscale electron hopping mechanism to effective macroscale piezoresistive response through finite elements based computational micromechanics techniques. The evolution of nanoscale conductive electron hopping pathways which leads to nanocomposite piezoresistivity is studied in detail along with its evolution under applied deformations. The nanoscale piezoresistive response is used to evaluate macroscale nanocomposite response by using analytical micromechanics methods. The effective piezoresistive response, obtained in terms of macroscale effective gauge factors, is shown to predict the experimentally obtained gauge factors published in the literature within reasonable tolerance. In addition, the effect of imperfect interface between the CNTs and the polymer matrix on the mechanical and piezoresistive properties is studied using coupled electromechanical cohesive zone modeling. It is observed that the interfacial separation and damage at the nanoscale leads to a larger nanocomposite irreversible piezoresistive response under monotonic and cyclic loading because of interfacial damage accumulation. As a sample application, the CNT-polymer nanocomposites are used as a binding medium for polycrystalline energetic materials where the nanocomposite binder piezoresistivity is exploited to provide inherent deformation and damage sensing. The nanocomposite binder medium is modeled using electromechanical cohesive zones with properties obtained through the Mori-Tanaka method allowing for different local CNT volume fractions and orientations. Finally, the traditional implementation of Material Point Method (MPM) is extended for composite problems with large deformation (e.g. large strain nanocomposite sensors with elastomer matrix) allowing for interfacial discontinuities appropriately. Overall, the current work evaluates nanocomposite piezoresistivity using a multiscale modeling framework and emphasizes through a sample application that nanocomposite piezoresistivity can be exploited for inherent sensing in materials. / Ph. D.
|
57 |
Multiscale Modeling of the Effects of Nanoscale Load Transfer on the Effective Elastic Properties of Carbon Nanotube-Polymer NanocompositesLi, Yumeng 19 January 2015 (has links)
A multiscale model is proposed to study the influence of interfacial interactions at the nanoscale in carbon nanotube(CNT)-polymer nanocomposites on the macroscale bulk elastic material properties. The efficiency of CNT reinforcement in terms of interfacial load transferring is assessed for the non-functionalized and functionalized interfaces between the CNTs and polymer matrix using force field based molecular dynamic simulations at the nanoscale. Polyethylene (PE) as a thermoplastic material is adopted and studied first because of its simplicity. Characterization of the nanoscale load transfer has been done through the identification of representative nanoscale interface elements for unfunctionalized CNT-PE interface models which are studied parametrically in terms of the length of the PE chains, the number of the PE chains and the "grip" position. Referring to the non-functionalized interface, CNTs interact with surrounding polymer only through weakly nonbonded van der Waals (vdW) forces in our study. Once appropriate values of these parameters are deemed to yield sufficiently converged results, the representative interface elements are subjected to normal and sliding mode simulations in order to obtain the force-separation responses at 100K and 300K for unfunctionalized CNT-PE interfaces. To study the functionalization effects, atomistic interface representative elements for functionalized CNT-PE interface are built based on non-functionalized interface models by grafting functional groups between the PE matrix and the graphene sheet. This introduces covalent bonding forces in addition to the non-bonded vdW forces. A modified consistent covalent force field (CVFF) and adaptive intermolecular reactive empirical bond order (AIREBO) potentials, both of which account for bond breaking, are applied to investigate the interfacial characteristic of functionalized CNT-PE interface in terms of the force-separation responses at 100K in both normal opening and sliding mode separations. In these studies, the focus has been on the influence of the functionalization density on the load transfer at the nanoscale interface.
As an important engineering material, Epon 862/DETDA epoxy polymer,a thermoset plastic, has also been used as the polymer matrix material in order to see the difference in interfacial load transfer between a network structured polymer and the amorphous entangled structure of the PE matrix. As for thermoset epoxy polymer, emphasis has been put on investigating the effects of the crosslink density of the epoxy network on the interfacial load transfer ability for both non-functionalized and functionalized CNT-Epoxy interface at different temperatures(100K and 300K) and on the functionalization effect influenceing the interfacial interactions at the functionalized CNT-Epoxy interface.
Cohesive zone traction-displacement laws are developed based on the force-separation responses obtained from the MD simulations for both non-functionalied and functionalized CNT-PE/epoxy interfaces. Using the cohesive zone laws, the influence of the interface on the effective elastic material properties of the nanocomposites are observed and determined in continuum level models using analytic and computational micromechanics approaches, allowing for the assessment of the improvement in reinforcement efficiency of CNTs due to the functionalization. It is found that the inclusion of the nanoscale interface in place of the perfectly bonded interface results in effective elastic properties which are dependent on the applied strain and temperature in accordance with the interface sensitivity to those effects, and which are significantly diminished from those obtained under the perfect interface assumption for non-functionalized nanocomposites. Better reinforcement efficiency of CNTs are also observed for the nanocomposites with the functionalized interface between CNTs and polymer matrix, which results in large increasing for the effective elastic material properties relative to the non-functionalized nanocomposites with pristine CNTs. Such observations indicates that trough controlling the degree of functionalization, i.e. the number and distribution of covalent bonds between the embedded CNTs and the enveloping polymer, one can tailor to some degree the interfacial load transfer and hence, the effective mechanical properties.
The multiscale model developed in this study bridges the atomistic modeling and micromechanics approaches with cohesive zone models, which demonstrates to deepen the understanding of the nanoscale load transfer mechanism at the interface and its effects on the effective mechanical properties of the nanocomposites. It is anticipated that the results can offer insights about how to engineer the interface and improve the design of nanocomposites. / Ph. D.
|
58 |
Cohesive zone modeling for predicting interfacial delamination in microelectronic packagingKrieger, William E. R. 22 May 2014 (has links)
Multi-layered electronic packages increase in complexity with demands for functionality. Interfacial delamination remains a prominent failure mechanism due to mismatch of coefficient of thermal expansion (CTE). Numerous studies have investigated interfacial cracking in microelectronic packages using fracture mechanics, which requires knowledge of starter crack locations and crack propagation paths. Cohesive zone theory has been identified as an alternative method for modeling crack propagation and delamination without the need for a pre-existing crack. In a cohesive zone approach, traction forces between surfaces are related to the crack tip opening displacement and are governed by a traction-separation law. Unlike traditional fracture mechanics approaches, cohesive zone analyses can predict starter crack locations and directions or simulate complex geometries with more than one type of interface.
In a cohesive zone model, cohesive zone elements are placed along material interfaces. Parameters that define cohesive zone behavior must be experimentally determined to be able to predict delamination propagation in a microelectronic package. The objective of this work is to study delamination propagation in a copper/mold compound interface through cohesive zone modeling. Mold compound and copper samples are fabricated, and such samples are used in experiments such as four-point bend test and double cantilever beam test to obtain the cohesive zone model parameters for a range of mode mixity. The developed cohesive zone elements are then placed in a small-outline integrated circuit package model at the interface between an epoxy mold compound and a copper lead frame. The package is simulated to go through thermal profiles associated with the fabrication of the package, and the potential locations for delamination are determined. Design guidelines are developed to reduce mold compound/copper lead frame interfacial delamination.
|
59 |
AnÃlise nÃo linear de compÃsitos laminados utilizando o mÃtodo dos elementos finitos / Nonlinear analysis of laminated composites using the finite element methodEdson Moreira Dantas JÃnior 29 August 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Materiais compÃsitos vem sendo amplamente estudados devido aos seus inÃmeros benefÃcios em relaÃÃo aos materiais metÃlicos, principalmente a elevada razÃo resistÃncia/peso, bom iso-lamento tÃrmico e boa resistÃncia à fadiga. CompÃsitos laminados, foco do presente trabalho, sÃo produzidos pelo empilhamento de um conjunto delÃminas, cada uma composta de fibras unidirecionais ou bidirecionais imersas em uma matriz polimÃrica. As estruturas de materiais compÃsitos apresentam comportamento nÃo linear, tanto fÃsico quanto geomÃtrico. Devido à elevada resistÃncia, estruturas de material compÃsito tendem a ser bastante esbeltas, podendo apresentar grandes deslocamentos e problemas de estabilidade. Adicionalmente, a consideraÃÃo da nÃo linearidade fÃsica tambÃm à importante para a simulaÃÃo de falha de estruturas laminadas. Um dos modos de falha mais importantes destas estruturas à a delaminaÃÃo, que consiste no descolamento de duas lÃminas adjacentes. No projeto de estruturas laminadas, o MÃtodo dos Elementos Finitos à a ferramenta de anÃlise mais utilizada devido a sua robustez, precisÃo e relativa simplicidade. Afim de permitir a anÃlise nÃo linear de estruturas laminadas submetidas a grandes deslocamentos, foi desenvolvida neste trabalho uma formulaÃÃo de
elementos finitos sÃlidos laminados baseados na abordagem Lagrangiana Total. A simulaÃÃo do inÃcio e propagaÃÃo da delaminaÃÃo foi realizada neste trabalho utilizando Modelos de Zona Coesiva. Para este fim, foi desenvolvida uma formulaÃÃo de elementos isoparamÃtricos de interface com espessura nula e utilizados diferentes modelos constitutivos para representar a relaÃÃo entre as tensÃes e os deslocamentos relativos das faces da trinca coesiva, incluindo tanto o caso de modo I puro quanto de modo misto. As formulaÃÃes desenvolvidas neste trabalho foram implementadas no software de cÃdigo aberto FAST utilizando afilosofiade ProgramaÃÃo Orientada a Objetos. Estas implementaÃÃes sÃo apresentadas utilizando as convenÃÃes da UML. VÃrios exemplos foram utilizados para verificar e validar as implementaÃÃes realizadas. Excelentes resultados foram obtidos utilizando elementos sÃlidos laminados na anÃlise de estruturas de casca, mesmo empregando malhas com apenas um elemento sÃlido na espessura. No que diz respeito à delaminaÃÃo, verificou-se que o uso de Modelos de Zona Coesiva requer muito cuidado na escolha dos parÃmetros utilizados na anÃlise, principalmente no que diz respeito à relaÃÃo tensÃo-deslocamento relativo, tamanho dos elementos e mÃtodo de integraÃÃo numÃrica. Contudo, utilizando-se a integraÃÃo de Newton-Cotes e elementos de interface de tamanho adequado, obteve-se uma concordÃncia muito boa com resultados teÃricos e experimentais disponÃveis na literatura. De forma geral,verificou-se que o modelo coesivo exponencial apresenta maior robustez e eficiÃncia computacional que o modelo bilinear. / Composite materials has been widely studied thought the years because of it benefits compared
to metals (elevated resistance/weight ratio, good thermal isolation and good fatigue resistance).
Laminate composites are the focus of this work. Produced by stacked layers of fibers embed-
ded on polymeric matrices, structures of composite materials presents material and geometrical
non-linear behavior. Because of it elevated resistance, composite materials allow designers to
create very slender structures which might present large displacements and stability problems.
Additionally, considering material non-linearity is also important for collapse simulation of la-
minated structures. One of the most important failure modes on laminated structures is delami-
nation. Delamination is the detachment of adjacent layers. On laminated structures simulation,
the Finite Element Method is one of the most used analysis tool. It is a robust, precise and
relative simple operating tool. Intending analyzing non-linear behavior of laminated structures
subjected to large displacements, was developed on this work a laminated solid finite element
formulation based on Full Lagrangian formulation. Simulation of delamination beginning and
propagation was developed on this work using Cohesive Zone models. To achieve this goal, an
isoparametric formulation of interface finite elements without thickness and many constitutive
models to represent the relation tension
Ã
displacement jump (relative displacement between
crack faces) were developed. These models consider pure mode I and mixed mode. The formu-
lations developed on this work were implemented on the open source finite element code FAST
using Oriented Object Programing philosophy. These implementations are presented on UML
conventions. Many examples were tested for verifying and validating all the implementations.
Excellent results were obtained using laminated solid elements on the analysis of a shell struc-
ture, even using meshes with only one element though thickness. On the delamination analysis,
was verified that Cohesive Zone Models are very sensible related to the parameters used on the
analysis, mainly tension
Ã
displacement jump model, size of elements and numerical integra-
tion. Spite of it, using Newton-Cotes integration and interface elements of appropriate size,
good agreements were obtained compared with theoretical results obtained on literature. In
general, was observed that cohesive exponential model presents greater robustness and compu-
tational efficiency than bilinear model.
|
60 |
Failure Prediction for Composite Materials with Generalized Standard ModelsZhenyuan Gao (7481801) 17 October 2019 (has links)
<div>Despite the advances of analytical and numerical methods for composite materials, it is still challenging to predict the onset and evolution of their different failure mechanisms. Because most failure mechanisms are irreversible processes in thermodynamics, it is beneficial to model them within a unified thermodynamic framework. Noting the advantages of so-called generalized standard models (GSMs) in this regard, the objective of this work is to formulate constitutive models for several main failure mechanisms: brittle fracture, interlaminar delamination, and fatigue behavior for both continuum damage and delamination, in a generalized standard manner.</div><div><br></div><div>For brittle fracture, the numerical difficulties caused by damage and strain localization in traditional finite element analysis will be addressed and overcome. A nonlocal damage model utilizing an integral-type regularization technique will be derived based on a recently developed ``local'' continuum damage model. The objective is to make this model not only rigorously handle brittle fracture, but also incorporate common damage behavior such as damage anisotropy, distinct tensile and compressive damage behavior, and damage deactivation. A fully explicit integration scheme for the present model will be developed and implemented.</div><div><br></div><div>For fatigue continuum damage, a viscodamage model, which can handle frequently observed brittle damage phenomena, is developed to produce stress-dependent fatigue damage evolution. The governing equation for damage evolution is derived using an incremental method. A class of closed-form incremental constitutive relations is derived. </div><div><br></div><div>For interlaminar delamination, a cohesive zone model (CZM) will be proposed. Focus is placed on making the associated cohesive elements capable of displaying experimental critical energy release rate--mode mixture ratio relationships. To achieve this goal, each cohesive element is idealized as a deformable string exhibiting path dependent damage behavior. A damage model having a path dependence function will be developed, which will be constructed such that each cohesive element can exhibit designated, possibly sophisticated mixed-mode behavior. The rate form of the cohesive law will be subsequently derived.</div><div><br></div><div>Finally, a CZM for interlaminar fatigue, capable of handling brittle damage behavior, is developed to produce realistic interlaminar crack propagation under high-cycle fatigue. An implicit integration scheme, which can handle complex separation paths and mixed-mode delamination, is developed. Many numerical examples will be utilized to clearly demonstrate the capabilities of the proposed nonlocal damage model, continuum fatigue damage model, and CZMs for quasi-static and fatigue delamination.</div>
|
Page generated in 0.0468 seconds