• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 27
  • 8
  • 8
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 117
  • 117
  • 56
  • 43
  • 41
  • 36
  • 30
  • 29
  • 26
  • 23
  • 22
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modélisation du comportement mécanique des composites a matrice céramique : développement du réseau de fissures / Damage model for the mechanical behaviour of ceramic matrix composite materials : crack networks development

Coradi, Audrey 18 November 2014 (has links)
Les matériaux composites à matrice céramique (CMC) sont élaborés à partir de constituants fragiles. Le comportement mécanique et le développement de la fissuration dépendent des propriétés des constituants élémentaires des CMC. La connaissance de l’influence de ces propriétés sur l’évolution de la fissuration et du comportement mécanique fournit une aide au concepteur de matériaux composites.L’objectif de ce travail est de modéliser l’évolution du réseau de fissures au sein du CMC sollicité en traction, à l’échelle du fil et à l’échelle du composite tissé. L’approche proposée est une alternative aux principaux modèles de comportement des CMC.A l’échelle du fil, l’endommagement intervient d’abord sous forme de fissures matricielles accompagnées de décohésions à l’interface fibre/matrice. Les analyses de ces deux mécanismes ont permis d’exprimer leur évolution au sein du fil en traction. Le comportement en traction résultant de l’endommagement et l’ouverture de la fissure matricielle sont aussi exprimés semi-analytiquement.Les comparaisons avec un modèle numérique de zones cohésives et avec les essais expérimentaux montrent une bonne corrélation des résultats.Enfin ces expressions à l’échelle du fil sont utilisées pour modéliser l’endommagement du fil longitudinal au sein du composite tissé en traction. De plus, un outil numérique est développé pour modéliser la fissuration matricielle inter-fil dans le composite tissé. / Ceramic matrix composite materials (CMC) are elaborated from fragile constituents. Their mechanical behaviour and crack growing depend on the properties of the CMC elementary constituent. Knowing the influence of these properties on crack development and mechanical behaviour provides support to the composite material designer.This work aims at modelling the crack networks development within the CMC under axial tension, at the yarn scale as well as at the woven composite scale. The proposed approach is an alternative to the main CMC behaviour models.At the yarn scale, matrix cracking with interfacial debonding between fiber and matrix first happen. Both mechanisms are analysed and their development are expressed. The mechanical behaviour resulting from damage and the crack opening displacement are also described using semi-analytical equations. Comparisons with numerical cohesive zone model and also with experimental testing shows good correlation between results.These semi-analytical expressions are then used for modelling damage within each yarns at the woven composite scale. In addition, a numerical tool is developed for matrix cracking and interfacial debonding between yarns of the woven composite.
62

Modeling of fracture in heavy steel welded beam-to-column connection submitted to cyclic loading by finite elements

Lequesne, Cédric 25 June 2009 (has links)
During the earthquake in Japan and California in the 1990s, some weld beam-to-column connections had some cracks in heavy rigid frame steel building. Consequently it is required to assess the performance of the welded connection in term of rotation capacity and crack propagation strength. Some experimental tests have been performed. The weld connections were submitted to cyclic loading with increasing amplitude until macro crack event. However the crack phenomenon depends on many parameters: the geometry, the material, the welding process. For this reason, it is interesting to develop a finite element modeling of this connection to complete these experiments and perform a parametric study. The welded connection is modeled by three dimensional mixed solid elements. The constitutive law is elastoplastic with isotropic hardening identified for the base metal and the weld metal. The crack propagation is modeled by cohesive zone model. The parameters of the cohesive zone model have been identified by inverse method with the modeling of three point bend tests of a pre-cracked sample performed on the base and weld metal. The fatigue damage generated by the cyclic loading is computed by the fatigue continuum damage model of Lemaitre and Chaboche and it is coupled with the cohesive zone model. The damage and the crack propagation depend on the residual stresses generated by the welding process. They have been computed by a simulation of this process with a thermo mechanical finite element analysis. This thesis presents the used models and the results compared with the experimental tests.
63

Micromechanical modeling of cleavage fracture in polycrystalline materials

Stec, Mateusz January 2008 (has links)
Cleavage fracture in ferritic steels can be defined as a sequence of few critical steps. At first nucleation of a microcrack takes place, often in a hard inclusion. This microcrack then propagates into the surrounding matrix material. The last obstacle before failure is the encounter of grain boundaries. If a microcrack is not arrested during any of those steps, cleavage takes place. Temperature plays an important role since it changes the failure mode from ductile to brittle in a narrow temperature interval. In papers A and B micromechanical models of the last critical phase are developed (cleavage over a grain boundary) in order to examine the mechanics of this phase. An extensive parameter study is performed in Paper A, where cleavage planes of two grains are allowed to tilt relative each other. It is there shown that triaxiality has a significant effect on the largest grain size that can arrest a rapidly propagating microcrack. This effect is explained by the development of the plastic zone prior to crack growth. The effect of temperature, addressed through a change in the visco-plastic response of the ferrite, shows that the critical grain size increases with the temperature. This implies that with an increasing temperature more cracks can be arrested, that is to say that less can become critical and thus that the resistance to fracture increases. Paper B shows simulations of microcrack propagation when the cleavage planes of two neighboring grains are tilted and twisted relatively each other. It is shown that when a microcrack enters a new grain, it first does it along primary cleavage planes. During further growth the crack front is protruded along the primary planes and lags behind along the secondary ones. The effect of tilt and twist on the critical grain size is decoupled with twist misorientation offering a greater resistance to propagation. Simulations of cracking of a particle and microcrack growth across an inclusion-matrix interface are made in Paper C. It is shown that the particle stress can be expressed by an Eshelby type expression modified for plasticity. The analysis of dynamic growth, results in a modified Griffith expression. Both findings are implemented into a micromechanics-based probabilistic model for cleavage that is of a weakest link type and incorporates all critical phases of cleavage: crack nucleation, propagation over particle-matrix interface and into consecutive grains. The proposed model depends on six parameters, which are obtained for three temperatures in Paper D using experimental data from SE(B) tests. At the lowest temperature, -30° , the model gives an excellent prediction of the cumulative failure probability by cleavage fracture and captures the threshold toughness and the experimental scatter. At 25º  and 55º  the model slightly overestimates the fracture probability. In Paper E a serie of fracture experiments is performed on half-elliptical surface cracks at 25º in order to further verify the model. Experiments show a significant scatter in the fracture toughness. The model significantly overestimates the fracture probability for this crack geometry. / QC 20100910
64

Numerical methods for dynamic contact and fracture problems

Doyen, David 02 December 2010 (has links) (PDF)
The present work deals with the numerical solution of dynamic contact and fracture problems. The contact problem is a Signorini problem with or without Coulomb friction. The fracture problem uses a cohesive zone model with a prescribed crack path. These problems are characterized by a non-regular boundary condition and can be formulated with evolutionary variational inequations or differential inclusions. For the numerical solution, we combine, as usual in solid dynamics, a finite element discretization in space and time-integration schemes. For the contact problem, we begin by comparing the main methods proposed in the literature. We then focus on the so-called modified mass method recently introduced by H. Khenous, P. Laborde et Y. Renard, for which we propose a semi-explicit variant. In addition, we prove a convergence result of the space semi-discrete solutions to a continuous solution in the frictionless viscoelastic case. We also analyze the space semi-discrete and fully discrete problems in the friction Coulomb case. For the dynamic fracture problem, using a fully explicit scheme is impossible or not robust enough. Therefore, we propose time-integration schemes where the boundary condition is treated in an implicit way. Finally, we present and analyze augmented Lagrangian methods for static fracture problems
65

Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models

Turon Travesa, Albert 18 December 2006 (has links)
Es desenvolupa una eina de disseny per l'anàlisi de la tolerància al dany en composites. L'eina pot predir el inici i la propagació de fisures interlaminars. També pot ser utilitzada per avaluar i planificar la necessitat de reparar o reemplaçar components durant la seva vida útil. El model desenvolupat pot ser utilitzat tan per simular càrregues estàtiques com de fatiga.El model proposat és un model de dany termodinàmicament consistent que permet simular la delaminació en composites sota càrregues variables. El model es formula dins el context de la Mecànica del Dany, fent ús dels models de zona cohesiva. Es presenta un metodologia per determinar els paràmetres del model constitutiu que permet utilitzar malles d'elements finits més bastes de les que es poden usar típicament. Finalment, el model és també capaç de simular la delaminació produïda per càrregues de fatiga. / A design tool for the analysis of delamination in laminated composites was developed. The design tool is developed using the damage-tolerance concept to predict both delamination initiation and growth. Therefore, the model developed can be used to perform either strength or damage-tolerance verification of new components, and can be used to assess the necessity to repair or replace in-service components. The model developed can be used either to simulate quasi-static or fatigue loading.A thermodinamically consistent damage model is proposed for the simulation of delamination in composite materials under variable-mode loading. The model is formulated in the context of Damage Mechanics by means of the Cohesive Zone Model concept. Moreover, a methodology to determine the parameters of the constitutive model is proposed. The methodology presented allows the use of coarser meshes that is usually admissible. Finally, the model has been enhanced to simulate high cycle fatigue.
66

Modélisation de la propagation de fractures hydrauliques par la méthode des éléments finis étendue / Modeling fluid-driven cracks with the extended finite element method

Paul, Bertrand 02 December 2016 (has links)
La perméabilité des roches est fortement influencée par la présence de fractures car ces dernières constituent un chemin préférentiel pour l’écoulement des fluides. Ainsi la présence de fractures naturelles est un facteur déterminant pour la productivité d’un réservoir. Dans le cas de roches à faible conductivité, des techniques de stimulation telle que la fracturation hydraulique sont utilisées pour en augmenter la perméabilité et rendre le réservoir exploitable d’un point de vue économique. A l’inverse, dans le cas du stockage géologique, la présence de fractures dans la roche représente un danger dans la mesure où elle facilite le transport et la migration des espèces disséminées dans la roche. Pour le stockage de CO2, les fuites par les fractures présentes dans les couvertures du réservoir et la réactivation des failles constituent un risque majeur. Et en ce qui concerne le stockage géologique de déchets radioactifs, la circulation de fluide dans des réseaux de fractures nouvelles ou réactivées au voisinage de la zone de stockage peut aboutir à la migration de matériaux nocifs. Il est donc important de prévoir les effets de la présence de fractures dans un réservoir. Le but de cette thèse est le développement d’un outil numérique pour la simulation d’un réseau de fractures et de son évolution sous sollicitation hydro-mécanique. Grâce à sa commodité, la méthode des éléments finis étendue (XFEM) sera retenue et associée à un modèle de zone cohésive. La méthode XFEM permet en effet l’introduction de fissures dans le modèle sans nécessairement remailler en cas de propagation des fissures. L’écoulement du fluide dans la fissure et les échanges de fluide entre la fissure et le milieu poreux seront pris en compte via un couplage hydro-mécanique. Le modèle est validé avec une solution analytique asymptotique pour la propagation d’une fracture hydraulique plane dans un milieu poroélastique en 2D comme en 3D. Puis, nous étudions la propagation de fractures hydrauliques sur trajets inconnus. Les fissures sont initialement introduites comme des surfaces de fissuration potentielles étendues. Le modèle de zone cohésive sépare naturellement les domaines adhérents et ouverts. Les surfaces potentielles de fissuration sont alors actualisées de manière implicite par un post-traitement de l’état cohésif. Divers exemples de réorientation de fissures hydrauliques et de compétition entre fissures voisines sont analysés. Enfin, nous présentons l’extension du modèle aux jonctions de fractures hydrauliques / The permeability of rocks is widely affected by the presence of fractures as it establishes prevailing paths for the fluid flow. Natural cracks are then a critical factor for a reservoir productiveness. For low permeability rocks, stimulation techniques such as hydrofracturing have been experienced to enhance the permeability, so that the reservoir becomes profitable. In the opposite, when it comes to geological storage, the presence of cracks constitutes a major issue since it encourages the leak and migration of the material spread in the rock. In the case of CO2 storage, the scenario of leakage across the reservoir seal through cracks or revived faults is a matter of great concern. And as for nuclear waste storage, the fluid circulation in a fracture network around the storage cavity can obviously lead to the migration of toxic materials. It is then crucial to predict the effects of the presence of cracks in a reservoir. The main purpose of this work is the design of a numerical tool to simulate a crack network and its evolution under hydromechanical loading. To achieve this goal we chose the eXtended Finite Element Method (XFEM) for its convenience, and a cohesive zone model to handle the crack tip area. The XFEM is a meshfree method that allows us to introduce cracks in the model without necessarily remeshing in case of crack propagation. The fluid flow in the crack as well as the exchanges between the porous rock and the crack are accounted for through an hydro-mechanical coupling. The model is validated with an analytical asymptotic solution for the propagation of a plane hydraulic fracture in a poroelastic media, in 2D as well as in 3D. Then we study the propagation of hydraulic fractures on non predefined paths. The cracks are initially introduced as large potential crack surfaces so that the cohesive law will naturally separate adherent and debonding zones. The potential crack surfaces are then updated based on a directional criterion appealing to cohesive integrals only. Several examples of crack reorientation and competition between nearby cracks are presented. Finally, we extend our model to account for the presence of fracture junctions
67

Propriétés d’adhérence de revêtements projetés plasma sur substrats fragiles : caractérisation et identification de lois d’interface par Modèles de Zones Cohésives / Plasma sprayed coatings adhesion properties on brittle substrate : characterization and identification of interface laws by cohesive zone model

Pons, Elodie 29 February 2016 (has links)
La rupture adhésive est un mécanisme de défaillance fréquemment observé sur les structures multicouches et les pièces revêtues dans les technologies actuelles telles que la microélectronique, le biomédical ou l’aérospatial. Selon l’application visée et les sollicitations en service rencontrées, des propriétés d’adhérence minimales sont attendues.Le CEA Le Ripault étudie la tenue mécanique de systèmes revêtement/substrat. Deux assemblages constitués d’un revêtement projeté plasma, l’un céramique et l’autre métallique, sur un substrat fragile en céramique sont étudiés. Ces revêtements disposent d’une microstructure et de propriétés mécaniques bien spécifiques liées au procédé d’élaboration. L’un des objectifs de cette thèse est de caractériser et quantifier l’adhérence des revêtements projetés plasma aux moyens d’essais mécaniques. Classiquement, les essais d’adhérence sont largement développés pour l’étude de l’adhérence de revêtements céramiques sur substrats ductiles, pour des applications de type barrières thermiques. Or la grande fragilité des substrats et des revêtements représente des difficultés supplémentaires à la mise en œuvre des essais d’adhérence. Afin de prévenir la rupture cohésive du substrat, les essais nécessitent un effort d’adaptation tenant compte des contraintes dimensionnelles et matérielles imposées par l’assemblage. Par ailleurs, afin de caractériser intégralement l’adhérence, différents modes de sollicitation sont balayés à travers différents essais d’adhérence : traction, cisaillement bi-entaillé, clivage en coin, flexion 4 points sur éprouvette entaillée, four-point bend End Notched Flexure test (4-ENF),…Le second objectif est de prédire l’amorçage et la propagation de fissures à l’interface afin de garantir la tenue mécanique des assemblages. Pour cela, une stratégie d’identification d’une loi d’interface, décrivant son comportement à la rupture, est proposée. Les Modèles de Zones Cohésives (MZC) sont adoptés pour modéliser le délaminage, sous le code éléments finis ABAQUS, à l’aide d’une loi traction-séparation bilinéaire. La comparaison entre les réponses macroscopiques numérique et expérimentale de chacun des essais d’adhérence effectué permet de calibrer chaque paramètre de la loi cohésive. Ainsi, la démarche expérimentale et numérique couplée permet d’obtenir des scénarios de rupture conformes aux observations expérimentales et d’évaluer l’intégrité de la structure soumise à une sollicitation thermique ou mécanique donnée. / Interfacial cracking is a recurrent failure mechanism observed in multilayer structures and coating systems using in various fields as microelectronics, biomedical engineering or aerospace. According to the aimed application and operating loadings, a minimum adhesion of the interface is expected.CEA Le Ripault studies the mechanical strength of coating/substrate systems. Two multilayer structures made of plasma sprayed coating layer, one ceramic and the other metallic, on a brittle ceramic substrate are studied. These plasma sprayed coatings have specifics microstructure and mechanicals properties linked to manufacturing process.One of the purposes of this work is to characterize and quantify plasma sprayed coatings adhesion through mechanical tests. Adhesion tests are widely developed for study the adhesion of ceramic coatings on ductile substrates for thermal barrier coatings applications. However the high brittleness of substrates and coatings constitutes an additional difficulty to implement adhesion tests. In order to prevent cohesive failure in substrate, adhesion tests require an adaptation taking materials and dimensionals constraints into account. Furthermore, in order to fully characterize the adhesion, different loadings modes are scanned through various adhesion tests: tensile test, shear test, wedge test, four-point bending test, 4-ENF…The second purpose is to predict crack initiation and propagation along the interface in order to guarantee multilayer mechanical strength. In that purpose, an interfacial law identification strategy is proposed to describe failure behavior. A Cohesive Zone Model (CZM) is adopted to model the delamination, using the finite element code ABAQUS, with a bilinear traction-separation law. The numerical and experimental macroscopic response comparison of each performed adhesion test allows to identify one cohesive law parameter. Thus, the coupled approach allows to model failure scenario in good agreement with experimental observations and assess the integrity of the assembled structure under a thermal or a mechanical loading.
68

Etude de la relation microstructure/propriétés mécaniques jusqu’à rupture des propergols composites : Caractérisation expérimentale et modélisation micromécanique par éléments finis / Etude de la relation microstructure/propriétés mécaniques jusqu’à rupture des propergols composites : Caractérisation expérimentale et modélisation micromécanique par éléments finis

Toulemonde, Paul-Aymé 18 November 2016 (has links)
Ce travail de thèse vise à identifier les mécanismes par lesquels la fraction volumique de charges, la distribution de tailles des charges, le comportement mécanique du liant et les propriétés d’adhésion liant/charge des propergols composites influent sur le comportement mécanique jusqu’à rupture de ces matériaux. Des calculs de microstructures 2D par éléments finis sont mis en œuvre pour caractériser qualitativement l’évolution de la microstructure du composite au cours d’une sollicitation de traction uniaxiale à faible vitesse de déformation. Ils prennent notamment en compte un modèle de zone cohésive pour représenter la décohésion à l’interface liant/charge et un critère original de ruine de la microstructure. Les résultats numériques sont favorablement comparés aux tendances obtenues expérimentalement sur propergols composites industriels et modèles. Par ailleurs, une validation de l’approche qualitative précédente est conduite en effectuant une confrontation quantitative du comportement mécanique et de la variation volumique d’un composite modèle, obtenus par simulation de microstructures 3D et par caractérisations expérimentales. Enfin, la tenue du propergol dans un assemblage propergol/lieur soumis à un test de pelage est étudiée expérimentalement. / This work aims at understanding the relationship between solid propellants particles volume fraction, particles size distribution, binder mechanical properties and binder/particles bonding with the mechanical behavior up to failure of these materials. Finite elements analyses on 2D microstructures are performed in order to qualitatively characterize the microstructure evolution throughout uniaxial tensile loading at small strain rate. These simulations account for the binder/particles debonding with a cohesive zone model and implement an original failure criterion. Simulation and experimental results are consistent. Besides, a quantitative comparison between simulations on 3D microstructures and experimental data is drawn in order to validate the above qualitative results. It is performed on a model composite and compares both the mechanical behavior and the volume variations. At last, the propellant failure during a peeling test of the liner/propellant structure is studied experimentally.
69

Caractérisation par corrélation d'images et modélisation par zones cohésives du comportement mécanique des interfaces / Characterization by digital image correlation and cohesive zone modeling of interfaces mechanics

Azab, Marc 29 August 2016 (has links)
Ce travail concerne l'étude de l'intégrité des matériaux ou des structures assemblées en s'intéressant à la modélisation du mécanisme de rupture à l'aide des modèles de zones cohésives (MZC). Cette approche présente l'avantage d'incorporer une longueur caractéristique dans la description de la rupture, ce qui permet notamment d'évaluer des effets de taille. Trois paramètres caractérisent ces MZC : la contrainte de traction Tmax à laquelle l'interface ou le matériau peut résister avant d'amorcer sa décohésion, l'ouverture critique à partir de laquelle une fissure est créée localement et finalement une loi traction-ouverture qui décrit la répartition des efforts cohésifs selon le mécanisme opérant.L'objectif principal de cette thèse est d'identifier les paramètres cohésifs caractérisant la rupture interfaciale dans un joint de colle ou cohésif dans un matériau. Pour cela, une première étape était d'élaborer un modèle analytique, décrivant correctement la cinématique d'un essai DCB ou Wedge, pour caractériser la rupture mode I. Bien que le mode d'ouverture soit opérant, le champ de déplacement au voisinage de l'entaille n'est pas K-dominant pour ces essais, du moins pas toujours. Plusieurs lois de traction-ouverture ont été considérées afin d'étudier leur influence sur la réponse locale et globale de l'essai. Une méthodologie d'identification inverse a été proposée à partir d'un modèle analytique, qui consiste à extraire les paramètres cohésifs en minimisant l'erreur au sens des moindres carrés entre les déflections analytique et numérique. Une fois validée, elle a été par la suite appliquée à un cas réel, qui est l'essai d'insertion de lame. La mesure du champ de déplacement expérimental est possible grâce à une mesure du champ de déplacement par corrélation d'image.Une analyse approfondie a été aussi consacrée à l'étude de la "Process Zone" pour un essai DCB ou Wedge. Cette étude met en évidence la variation de Lcz en fonction de la géométrie des éprouvettes, des propriétés de la zone cohésive, des propriétés mécaniques du matériau ou encore la forme de la loi traction-ouverture utilisée. Une nouvelle expression pour estimer Lcz est établie pour les zones cohésives rectangulaires et triangulaires.Une deuxième approche d’identification locale, basée sur le travail de Réthoré et Estevez (2013), a été aussi proposée et discutée. Elle a été mise en oeuvre pour un essai d'insertion de lame, avant d'être appliquée à un essai de flexion 4 points entaillé. Un aller-retour entre simulation numérique et résultat expérimental permet d'identifier les propriétés cohésives du matériau ou de l'interface / This work concerns the study of materials and assemblies structures integrity using cohesive zone model (CZM) to analyze fracture. These models have the advantage to incorporate a characteristic length in the description of fracture initiation and propagation, which can lead to size effects studies. Three parameters characterize the CZM : the maximal cohesive traction Tmax to which the interface or the material can resist before the onset of debonding, the critical crack opening from which a crack is created locally and finally the traction-separation law which describe the cohesive traction distribution depending on fracture process.The main purpose of this thesis is to identify the cohesive zone parameters describing fracture at the interface or in the material. The first step was to elaborate an analytical model which can describe properly the DCB or Wedge Test kinematic, to characterize mode I fracture. Despite the fact of mode I fracture, the displacement field near the crack-tip is not K-dominant for these tests, at least not always. Various traction-separation laws were considered in order to study their influence on the local and global response of the test. An inverse identification methodology has been proposed from the analytical model, which can extract cohesive parameters through a least square error minimization between numerical and analytical deflection. Once validated, it was subsequently applied to a real Wedge test. The experimental displacement field measurement was done due to digital image correlation measurement.A deep analysis to evaluate the fracture process zone length has been also dedicated in the case of Wedge or DCB Tests. This analysis shows that Lcz is not an intrinsic interface or materials property and it can vary depending on the sample's geometry, the cohesive zone properties or the traction-separation law. A new expression to determine Lcz was established for rectangular and triangular cohesive zone.A second local identification approach, based on the work of Réhoré and Estevez (2013), has been also proposed. It was implemented to analyze the Wedge test, before applying it to a notched four points bending test. A round trip between numerical simulations and experimental results allow identifying the cohesive properties in the materiel or at the interface.
70

Fissuration à l’interface d’un revêtement plasma céramique et d’un substrat métallique sous sollicitations dynamique et quasi-statique multiaxiales / Crack Behavior at the interface of a plasma sprayed ceramic coating and a metallic substrate under dynamic and quasi-static multiaxial loadings

Sapardanis, Hélène 29 November 2016 (has links)
Les travaux présentés dans ce manuscrit visent à étudier la propagation d'un défaut interfacial de géométrie connue soumis à un cisaillement macroscopique à partir d'une méthodologie expérimentale développée durant la thèse qui consiste à i) élaborer un système revêtu céramique/métal dont la morphologie d'interface est contrôlée, ii) introduire un défaut d'interface par la technique de choc laser, iii) soumettre le système revêtu pré-fissuré à un cisaillement macroscopique grâce à une machine de fatigue biaxiale coplanaire et iv) mesurer in situ l'évolution de ce défaut. Le système revêtu subit donc une sollicitation dynamique par la technique de choc laser et quasi-statique par les essais biaxiaux. La morphologie d'interface, paramètre influant sur la fissuration, est également étudiée. Un dépôt d'alumine pure est directement projeté par plasma sur un substrat métallique, un superalliage base cobalt Haynes 188 et un acier inoxydable 304L, sans sous-couche.Un premier travail d'analyse du défaut introduit par choc laser en fonction des paramètres laser et de la morphologie d'interface a tout d'abord été réalisé. Le défaut d'interface résultant se caractérise par une zone délaminée circulaire de quelques millimètres de diamètre et d'une cloque formée par la couche de céramique de quelques dizaines de micromètres de hauteur. Ces dimensions caractéristiques ont été mesurées à partir de techniques d'observation non destructives : profilométrie 3D, observation optique et thermographie infrarouge. La fissuration par choc laser a été étudiée par éléments finis grâce à un modèle de type contact cohésif pour l'interface.La propagation du défaut soumis à un cisaillement macroscopique a été caractérisée expérimentalement grâce aux observations optiques et à la technique de stéréo-corrélation d'images. L'analyse par élément finis du problème a permis d'accéder aux modes de sollicitation le long du front de fissure et de donner une première explication quant aux formes délaminées obtenues expérimentalement. Cette analyse s'appuie sur un modèle de zone cohésive dont les conditions aux limites imposées sont déterminées à l'aide des mesures de déplacement obtenues par corrélation d'images. En particulier, il a été mis en évidence que l’ouverture du front de fissure (mode I), induit par le flambage de la couche et par le chargement macroscopique, favorise la propagation du délaminage qui reste pilotée essentiellement par le cisaillement local (mode II et III). L'influence du cisaillement macroscopique dans le plan de la couche déposée sur la propagation du délaminage interfacial a ensuite été étudiée à partir de trois cas de chargement. Une analyse par éléments finis basée sur la mécanique linéaire de la rupture dans un matériau homogène a permis de déterminer l'influence du cisaillement macroscopique sur le chargement local le long du front de fissure. / The work presented in this manuscript aims to investigate the growth of an interfacial flaw, whose geometry is known, under macroscopic shear loading. An experimental methodology is thus developed in which i) a ceramic/metal coated system with controlled interface roughness is processed, ii) an interfacial flaw is introduced using the laser shock technique, iii) a macroscopic shear loading is applied on the coated system using a biaxial in-plane testing device and iv) interfacial crack growth and buckling are measured in situ. Hence, both dynamic and quasi-static loadings are applied on the coated system by respectively the laser shock technique and biaxial testing. The interface roughness, which affects the crack growth, is also considered in the study. A pure alumina coating is deposited by air plasma spraying on a metallic substrate, polycrystalline cobalt base superalloy Haynes 188 and stainless steel 304L substrates, with no bond coat.First, the flaw resulting from the propagation of a laser shock wave has been analyzed according to the laser parameters and the interface roughness. An interfacial flaw is characterized by a circular delamination with a diameter of a few millimeters and a circular blister with a height of a few tens of micrometers. These characteristic dimensions have been measured thanks to non destructive techniques: 3D profilometry and image analysis based on optical observations and infrared thermography. A finite element analysis has been carried out to investigate the crack behavior under laser shock wave propagation using a cohesive contact to account for the interface behavior.The interfacial flaw growth under macroscopic shear loading has been characterized with optical observations and the digital image stereo-correlation technique. The related finite element analysis enabled to identify the local loading along the crack front and gave a first explanation about the shapes of the delaminated area observed experimentally. This analysis relies on a cohesive zone model whose applied boundary conditions are established from the displacements measured by digital image correlation technique. By this way, the delamination growth was revealed to be mostly driven by local shear (mode II and III) and the crack opening (mode I), induced by the buckling of the deposited layer and the macroscopic shear, makes the delamination growth easier. Finally, the influence of the macroscopic shear loading on the interfacial delamination has been studied from three different macroscopic shear loadings. The finite element analysis based on linear elastic fracture mechanics in a homogenous material has allowed to study the influence of the macroscopic shear loading on the local loading along the crack front.

Page generated in 0.0625 seconds