Spelling suggestions: "subject:"cohomology group"" "subject:"cohomology croup""
1 |
A Lift of Cohomology Eigenclasses of Hecke OperatorsHansen, Brian Francis 24 May 2010 (has links) (PDF)
A considerable amount of evidence has shown that for every prime p &neq; N observed, a simultaneous eigenvector v_0 of Hecke operators T(l,i), i=1,2, in H^3(Γ_0(N),F(0,0,0)) has a “lift” v in H^3(Γ_0(N),F(p−1,0,0)) — i.e., a simultaneous eigenvector v of Hecke operators having the same system of eigenvalues that v_0 has. For each prime p>3 and N=11 and 17, we construct a vector v that is in the cohomology group H^3(Γ_0(N),F(p−1,0,0)). This is the first construction of an element of infinitely many different cohomology groups, other than modulo p reductions of characteristic zero objects. We proceed to show that v is an eigenvector of the Hecke operators T(2,1) and T(2,2) for p>3. Furthermore, we demonstrate that in many cases, v is a simultaneous eigenvector of all the Hecke operators.
|
2 |
Forma cohomológica do Teorema de Cauchy /Silva, Leda da. January 2010 (has links)
Orientador: Alice Kimie Miwa Libardi / Banca: João Peres Vieira / Banca: Gerson Petronilho / Resumo: O objetivo desta dissertação é apresentar uma abordagem cohomológica do Teorema de Cauchy e alguns resultados equivalentes a que um subconjunto aberto e conexo de C seja simplesmente conexo. Ressaltamos que um dos objetivos desta dissertação, inserida no Mestrado Profissional, Matemática Universitária, é estabelecer uma conexão entre as diversas áreas da Matemática, dando uma visão global da mesma, necessária ao professor universitário. Desta forma, o tema escolhido "Teorema de Cauchy"é um assunto visto na graduação, porém a abordagem usando grupos de cohomologia, números de voltas, espaços de recobrimento, feixes de germes de funções holomorfas, contribuem para o enriquecimento da formação da mestranda / Abstract: In this work we present a cohomological approach of the Cauchy's Theorem and also present several characterizations of simply connected domains of C / Mestre
|
3 |
Forma cohomológica do Teorema de CauchySilva, Leda da [UNESP] 04 May 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-05-04Bitstream added on 2014-06-13T18:06:54Z : No. of bitstreams: 1
silva_l_me_rcla.pdf: 767647 bytes, checksum: 77c93a6aec1e31ebbe544fac7c6cb314 (MD5) / O objetivo desta dissertação é apresentar uma abordagem cohomológica do Teorema de Cauchy e alguns resultados equivalentes a que um subconjunto aberto e conexo de C seja simplesmente conexo. Ressaltamos que um dos objetivos desta dissertação, inserida no Mestrado Profissional, Matemática Universitária, é estabelecer uma conexão entre as diversas áreas da Matemática, dando uma visão global da mesma, necessária ao professor universitário. Desta forma, o tema escolhido Teorema de Cauchyé um assunto visto na graduação, porém a abordagem usando grupos de cohomologia, números de voltas, espaços de recobrimento, feixes de germes de funções holomorfas, contribuem para o enriquecimento da formação da mestranda / In this work we present a cohomological approach of the Cauchy’s Theorem and also present several characterizations of simply connected domains of C
|
4 |
Periods and Algebraic deRham CohomologyFriedrich, Benjamin 20 October 2017 (has links)
The prehistory of Algebraic Topology dates back to Euler, Riemann and Betti, who started the idea of attaching various invariants to a topological space. With his simplicial (co)homology theory, Poincaré was the first to give an instance of what in modern terms we would call a contravariant functor H° from the category of (sufficiently nice) topological spaces to the category of cyclic complexes of abelian groups.
|
5 |
As esferas que admitem uma estrutura de grupo de Lie / Spheres that admit a Lie group structureLima, Kennerson Nascimento de Sousa 02 March 2010 (has links)
We will show that the only connected Euclidean spheres admitting a structure of Lie group are S1 and S3, for all n greater than or equal to 1. We will do this through the study of properties of the De Rham cohomology groups of sphere Sn and of compact connected Lie groups. / Fundação de Amparo a Pesquisa do Estado de Alagoas / Mostraremos que as únicas esferas euclidianas conexas que admitem uma estrutura de grupo de Lie são S1 e S3, para todo n maior ou igual a 1. Faremos isso por intermédio do estudo de propriedades dos grupos de cohomologia de De Rham das esfereas Sn e dos grupos de Lie compactos e conexos.
|
6 |
Fórmulas integrais para a curvatura r-média e aplicações / Spheres that admit a Lie group structureSantos, Viviane de Oliveira 29 January 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação, descrevemos resultados obtidos por Hilário Alencar e A. Gervasio Colares, publicado no Annals of Global Analysis and Geometry em 1998. Inicialmente, obtemos fórmulas integrais para a curvatura r-média, as quais generalizam fórmulas de Minkowski. Além disso, usando estas fórmulas, caracterizamos as hipersuperfícies compactas imersas no espaço Euclidiano, esférico ou hiperbólico cujo conjunto de pontos nestes espaços que não pertencem as hipersuperfícies totalmente geodésicas tangentes às hipersuperfícies compactas é aberto e não vazio. Outrossim, obtemos ainda resultados relacionados com a estabilidade. As demonstrações destes resultados são obtidas através da fórmula integral de Dirichlet para o operador linearizado da curvatura r-média de uma hipersuperfície imersa no espaço Euclidiano, esférico ou hiperbólico, bem como do uso de um resultado recente provado por Hilário Alencar, Walcy Santos e Detang Zhou no preprint Curvature Integral Estimates for Complete Hypersurfaces. Ressaltamos que esta dissertação foi baseada na versão corrigida por Hilário Alencar do artigo publicado no Annals of Global Analysis and Geometry.
|
7 |
Reduktionssysteme zur Berechnung einer Auflösung der orthogonalen freien Quantengruppen A<sub>o</sub>(n) / Reduction systems for computing a resolution of the free orthogonal quantum groups A<sub>o</sub>(n)Härtel, Johannes 04 July 2008 (has links)
No description available.
|
Page generated in 0.0511 seconds