Spelling suggestions: "subject:"collision"" "subject:"kollision""
901 |
Handoff of Advanced Driver Assistance Systems (ADAS) using a Driver-in-the-Loop Simulator and Model Predictive Control (MPC)Wilkerson, Jaxon 01 December 2020 (has links)
No description available.
|
902 |
二体衝突近似にもとづいた粒子 : 物質相互作用の数値シミュレーション / ニタイ ショウトツ キンジ ニ モトズイタ リュウシ : ブッシツ ソウゴ サヨウ ノ スウチ シミュレーション加藤 周一, Shuichi Kato 22 March 2016 (has links)
二体衝突近似法を、粒子-物質相互作用に関する様々な現象に応用した。特に二体衝突近似法と動的モンテカルロ法の接続によるBCA-kMCハイブリッドシミュレーションにより、従来の二体衝突近似法と拡散方程式を合わせた手法が抱える問題を克服することで、材料内での不純物拡散挙動をより詳細に解析することに成功した。本論文は将来的な二体衝突近似法の幅広い分野への応用の足がかりになることが期待される。 / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
903 |
Safe Controller Design for Intelligent Transportation System Applications using Reachability AnalysisPark, Jaeyong 17 October 2013 (has links)
No description available.
|
904 |
Visual and Demographic Factors in Bioptic Driving Training and Road SafetyDougherty, Bradley Edward 25 July 2013 (has links)
No description available.
|
905 |
Path Planning for Unmanned Air and Ground Vehicles in Urban EnvironmentsCurtis, Andrew B. 05 February 2008 (has links) (PDF)
Unmanned vehicle systems, specifically unmanned air vehicles (UAVs) and unmanned ground vehicles (UGVs), have become a popular research topic. This thesis discusses the potential of a UAV-UGV system used to track a human moving through complex urban terrain. This research focuses on path planning problems for both a UAV and a UGV, and presents effective solutions for both problems. In the UAV path planning problem, we desire to plan a path for a miniature fixed-wing UAV to fly through known urban terrain without colliding with any buildings. We present the Waypoint RRT (WRRT) algorithm, which accounts for UAV dynamics while planning a flyable, collision-free waypoint path for a UAV in urban terrain. Results show that this method is fast and robust, and is able to plan paths in difficult urban environments and other terrain maps as well. Simulation and hardware tests demonstrate that these paths are indeed flyable by a UAV. The UGV path planning problem focuses on planning a path to capture a moving target in an urban grid. We discuss using a target motion model based on Markov chains to predict future target locations. We then introduce the Capture and Propagate algorithm, which uses this target motion model to determine the probabilities of capturing the target in various numbers of steps and with various initial UGV moves. By applying some different cost functions, the result of this algorithm is used to choose an optimal first step for the UGV. Results demonstrate that this algorithm is at least as effective as planning a path directly to the current location of the target, and that in many cases, this algorithm performs better. We discuss these cases and verify them with simulation results.
|
906 |
Vehicle Collision Risk Prediction Using a Dynamic Bayesian Network / Förutsägelse av kollisionsrisk för fordon med ett dynamiskt Bayesianskt nätverkLindberg, Jonas, Wolfert Källman, Isak January 2020 (has links)
This thesis tackles the problem of predicting the collision risk for vehicles driving in complex traffic scenes for a few seconds into the future. The method is based on previous research using dynamic Bayesian networks to represent the state of the system. Common risk prediction methods are often categorized into three different groups depending on their abstraction level. The most complex of these are interaction-aware models which take driver interactions into account. These models often suffer from high computational complexity which is a key limitation in practical use. The model studied in this work takes interactions between drivers into account by considering driver intentions and the traffic rules in the scene. The state of the traffic scene used in the model contains the physical state of vehicles, the intentions of drivers and the expected behaviour of drivers according to the traffic rules. To allow for real-time risk assessment, an approximate inference of the state given the noisy sensor measurements is done using sequential importance resampling. Two different measures of risk are studied. The first is based on driver intentions not matching the expected maneuver, which in turn could lead to a dangerous situation. The second measure is based on a trajectory prediction step and uses the two measures time to collision (TTC) and time to critical collision probability (TTCCP). The implemented model can be applied in complex traffic scenarios with numerous participants. In this work, we focus on intersection and roundabout scenarios. The model is tested on simulated and real data from these scenarios. %Simulations of these scenarios is used to test the model. In these qualitative tests, the model was able to correctly identify collisions a few seconds before they occur and is also able to avoid false positives by detecting the vehicles that will give way. / Detta arbete behandlar problemet att förutsäga kollisionsrisken för fordon som kör i komplexa trafikscenarier för några sekunder i framtiden. Metoden är baserad på tidigare forskning där dynamiska Bayesianska nätverk används för att representera systemets tillstånd. Vanliga riskprognosmetoder kategoriseras ofta i tre olika grupper beroende på deras abstraktionsnivå. De mest komplexa av dessa är interaktionsmedvetna modeller som tar hänsyn till förarnas interaktioner. Dessa modeller lider ofta av hög beräkningskomplexitet, vilket är en svår begränsning när det kommer till praktisk användning. Modellen som studeras i detta arbete tar hänsyn till interaktioner mellan förare genom att beakta förarnas avsikter och trafikreglerna i scenen. Tillståndet i trafikscenen som används i modellen innehåller fordonets fysiska tillstånd, förarnas avsikter och förarnas förväntade beteende enligt trafikreglerna. För att möjliggöra riskbedömning i realtid görs en approximativ inferens av tillståndet givet den brusiga sensordatan med hjälp av sekventiell vägd simulering. Två olika mått på risk studeras. Det första är baserat på förarnas avsikter, närmare bestämt att ta reda på om de inte överensstämmer med den förväntade manövern, vilket då skulle kunna leda till en farlig situation. Det andra riskmåttet är baserat på ett prediktionssteg som använder sig av time to collision (TTC) och time to critical collision probability (TTCCP). Den implementerade modellen kan tillämpas i komplexa trafikscenarier med många fordon. I detta arbete fokuserar vi på scerarier i korsningar och rondeller. Modellen testas på simulerad och verklig data från dessa scenarier. I dessa kvalitativa tester kunde modellen korrekt identifiera kollisioner några få sekunder innan de inträffade. Den kunde också undvika falsklarm genom att lista ut vilka fordon som kommer att lämna företräde.
|
907 |
Design and Formal Verification of an Adaptive Cruise Control Plus (ACC+) SystemVakili, Sasan January 2015 (has links)
Stop-and-Go Adaptive Cruise Control (ACC+) is an extension of Adaptive Cruise Control (ACC) that works at low speed as well as normal highway speeds to regulate the speed of the vehicle relative to the vehicle it is following. In this thesis, we design an ACC+ controller for a scale model electric vehicle that ensures the robust performance of the system under various models of uncertainty. We capture the operation of the hybrid system via a state-chart model that performs mode switching between different digital controllers with additional decision logic to guarantee the collision freedom of the system under normal operation. We apply different controller design methods such as Linear Quadratic Regulator (LQR) and H-infinity and perform multiple simulation runs in MATLAB/Simulink to validate the performance of the proposed designs. We compare the practicality of our design with existing formally verified ACC designs from the literature. The comparisons show that the other formally verified designs exhibit unacceptable behaviour in the form of mode thrashing that produces excessive acceleration and deceleration of the vehicle.
While simulations provide some assurance of safe operation of the system design, they do not guarantee system safety under all possible cases. To increase confidence in the system, we use Differential Dynamic Logic (dL) to formally state environmental assumptions and prove safety goals, including collision freedom. The verification is done in two stages. First, we identify the invariant required to ensure the safe operation of the system and we formally verify that the invariant preserves the safety property of any system with similar dynamics. This procedure provides a high level abstraction of a class of safe solutions for ACC+ system designs. Second, we show that our ACC+ system design is a refinement of the abstract model. The safety of the closed loop ACC+ system is proven by verifying bounds on the system variables using the KeYmaera verification tool for hybrid systems. The thesis demonstrates how practical ACC+ controller designs optimized for fuel economy, passenger comfort, etc., can be verified by showing that they are a refinement of the abstract high level design. / Thesis / Master of Applied Science (MASc)
|
908 |
Molecular Spectroscopy Experiment to Measure Temperature-Dependent Radiative Lifetime of the SODIUM MOLECULE 6sΣ𝑔(𝑣 = 9, 𝐽 = 31) StateKashem, Md Shakil Bin 17 July 2023 (has links)
No description available.
|
909 |
Heavy Truck Modeling and Estimation for Vehicle-to-Vehicle Collision Avoidance SystemsWolfe, Sage M. 20 October 2014 (has links)
No description available.
|
910 |
Whole-Body Motion Retargeting for HumanoidsBin Hammam, Ghassan Mohammed January 2014 (has links)
No description available.
|
Page generated in 0.0753 seconds