• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electron spectroscopy of surfaces and interfaces for novel solid state photovoltaic cells

Pengpad, Atip January 2017 (has links)
Novel photovoltaic cells receive considerable attention from researchers as evidenced by high numbers of published articles. Different types of materials are currently being examined in order to reduce the cost and improve the efficiency of solar cells. Essentially, solar cells are constructed by placing layers of light absorber between electron and hole transport materials. Electricity generation by solar cells involves multiple processes. These processes require an understanding of the physical properties of the surfaces and interfaces of the materials. In this thesis, materials for novel photovoltaic cells are studied by X ray photoelectron spectroscopy (XPS), a surface and interface characterisation technique. The materials studied in this thesis are colloidal quantum dots (CQDs) of the core/shell systems CdTe/CdSe and PbS/CdS, and CQDs that have been surface passivated using Cl- (CdTe/Cl) and CdS (CdTe/CdSe/CdS and PbS/CdS). Moreover, CsSnI3, a perovskite material, is also studied in both bulk and thin film form. CQDs can be used as light absorbers in solar cells while CsSnI3 can be employed as the hole transport material. The role of the core shell structure and surface passivation treatment is to improve or maintain charge transport as well as acting as a protective layer to the CQDs. Depth profiling synchrotron radiation XPS is used to determine these structures. In the CdTe/CdSe samples, the elemental ratio between Se (shell) and Te (core) increases with decreasing sampling depth, demonstrating the presence of a CdSe shell located at the surface of the CQDs. The shell thicknesses of the core-shell systems are estimated from XPS and show that the addition of the third thin shell (of CdS) protects the CQD during ligand exchange. Cl- passivation is shown to reduce the energy the valence band maximum and the energy gap of CdTe CQDs. This is associated with the passivation of midgap trap states due to the removal of dangling bonds at the surface of CQDs. Surface passivation is shown to improve the stability of CQDs to air exposure. This is indicated by a significant reduction of the surface oxide species in the passivated PbS/CdS samples. In the unpassivated core-only PbS samples, however, oxidation rapidly occurs which affects the electronic states required for charge transport in solar cells. XPS studies of CsSnI3 show that this material is reactive to air exposure. Surface preparation techniques are performed to remove the contamination layer and reveal the physical properties of the perovskite itself. This is confirmed by the elemental ratios from XPS. The metallic character of CsSnI3 is also observed in the valence band spectra as evidenced by the appearance of the Fermi edge.
12

Optoelectronic Metamaterials / Métamatériaux opto-électroniques

Le-Van, Quynh 03 March 2016 (has links)
Une nouvelle génération de dispositifs électroniques et optoélectroniques combinant hautes performances et bas coût se profile grâce aux promesses des films à boîtes quantiques colloïdales (BQCs) et de leurs propriétés électriques et optiques uniques. Les BQCs sont des nanocristaux semi-conducteurs synthétisés en solution qui se comportent comme des atomes artificiels. Des progrès considérables ont été réalisés durant la dernière décennie pour développer une optoélectronique à base de films BQCs mais les performances des composants réalisés sont toujours limitées par un certain nombre de propriétés propres à ces milieux telles que leur granularité et la présence de ligands à la surface des nanocristaux. Un deuxième type de matériaux artificiels, les métamatériaux, suscite un intérêt considérable de la part de la communauté de la nano-optique en raison des perspectives qu'ils offrent pour surmonter la limite de diffraction, réaliser des capes d'invisibilités et des indices de réfraction négatif en optique. Cependant, un certain nombre des applications potentielles des métamatériaux optiques se heurtent à leurs pertes élevées et au manque de fonctionnalités actives contrôlées électriquement.Bien que les films BQCs et les métamatériaux soient étudiés de façon indépendante et associés à deux champs de recherche distincts, leurs propriétés ont beaucoup d'éléments en commun puisqu'elles sont dans les deux cas largement dictées par leur géométrie interne. Il paraît donc intéressant d'exploiter ces analogies et de voir si les difficultés rencontrées dans chaque discipline ne peuvent pas être surmontées en combinant les deux approches. Cette thèse se propose de jeter les premiers ponts entre films BQCs et métamatériaux et constitue une première tentative d'établir une synergie entre ces deux types de milieux artificiels.Dans un premier temps, nous étudions des réseaux de nanoantennes plasmoniques capables d'exalter la photoluminescence spontanée de BQCs et apportons de nouveaux éléments de compréhension à ces interactions. Ensuite, nous décrivons la fabrication et la caractérisation de LEDs à BQCs inorganiques et émission par le haut. Ces LEDs sont développées de façon à servir de plateforme pour la dernière partie de ce travail qui consiste à hybrider les films BQCs et les métamatériaux. Dans cette dernière partie, nous insérons les réseaux d'antennes plasmoniques étudiés précédemment dans l'architecture des LEDs et démontrons une nouvelle forme d'électroluminescence artificielle. Celle-ci se traduit par l'émission de lumière par des nanopixels discrets qui peuvent être arrangés de façon arbitrairement complexe afin de générer toute une gamme de fonctionnalités. D'autres avantages seront présentés comme une brillance accrue, une tension de seuil extrêmement basse, des longueurs d'ondes d'émission contrôlées par la géométrie et un contrôle total de la polarisation. Une série d'expériences visant à sonder les mécanismes à l’œuvre dans ce nouveau type de LEDs sera présentée.Ce travail illustre le très grand potentiel qu'il y a à combiner différentes classes de matière artificielle et suggère que bien d'autres opportunités découleront d'une vision unifiée des différents milieux composites développés en physique, chimie et ingénierie. / A next generation of electronic and optoelectronic devices with high performances and low cost is expected to take off with films of colloidal quantum dots (CQDs) thanks to their unique electrical and optical properties. CQDs are semiconducting nanocrystals synthesized in solution that behave as artificial atoms. Substantial progresses in CQD film-based optoelectronics has been made over the past decade, but the performances are still limited and governed by the merit and inherited properties of CQDs. Another type of artificial medium, metamaterials, is generating a considerable interest from the nano-optics community because of its promises for beating the diffraction limit, realizing invisible cloaks, and creating negative refractive of index at optical regime. However, many of the potential applications for optical metamaterials are limited by their losses and the lack of active functionalities driven by electricity.Although films of CQDs and metamaterials are studied independently and associated to two distinct fields, their properties are mainly determined by their inner geometry. In addition, the difficult hurdles from each field can be surmounted by cooperating with the other one. This dissertation establishes the first bridge to connect films of CQDs and metamaterials and is a first attempt at exploiting the synergy of different types of artificial media.Firstly, we study plasmonic nanoantenna arrays capable of enhancing the spontaneous photoluminescence of CQDs and provide new fundamental insight into these interactions. Secondly, we report the fabrication and characterization of the first inorganic top-emission infrared quantum dot light-emitting-diodes (QDLEDs). The diodes are developed to serve as a solid platform for studying the CQDs film/metamaterial hybrids. Finally, we insert the plasmonic nanoantenna arrays studied at the beginning of this thesis in our QDLEDs and demonstrate a novel form of electroluminescence in which light is emitted by discrete nanoscale pixels that than be arranged at will to form complex light emitting metasurfaces. Other advantages associated with our metamaterial QDLEDs will also be presented i.e. greatly enhanced brightness, extremely low turn-on voltage, emissive color tunability, and polarized electroluminescence. A series of controlled experiments to probe the operational mechanisms of metamaterial QDLED will be discussed.This demonstration illustrates the enormous synergy of combining different types of artificial matter and suggests that many other opportunities will arise by taking an unified view of the various artificial media developed in physics, chemistry and engineering.
13

Semiconductor colloidal quantum dots for photovoltaic applications

Cheng, Cheng January 2014 (has links)
This thesis studies lead suphide (PbS) colloidal quantum dots and their photovoltaic applications. Different sizes of PbS QDs were synthesised and characterised using absorption spectroscopy and transmission electron microscopes. PbS QD Schottky junction devices were fabricated with AM1.5 power conversion efficiency up to 1.8 %. The Schottky junction geometry limits the device performance. A semiconductor heterojunction using ZnO as an electron acceptor was built and the device efficiency increased to 3%. By studying the light absorption and charge extraction profile of the bilayer device, the absorber layer has a charge extraction dead zone which is beyond the reach of the built-in electric field. Therefore, strategies to create a QD bulk heterojunction were considered to address this issue by distributing the junction interface throughout the absorber layer. However, the charge separation mechanism of the QD heterojunction is not clearly understood: whether it operates as an excitonic or a depleted p-n junction, as the junction operating mechanism determines the scale of phase separation in the bulk morphology. This study shows a transitional behaviour of the PbS/ZnO heterojunction from excitonic to depletion by increasing the doping density of ZnO. To utilise the excitonic mechanism, a PbS/ZnO nanocrystal bulk heterojunction was created by blending the two nanocrystals in solution such that a large interface between the two materials could facilitate fast exciton dissociation. However, the devices show poor performance due to a coarse morphology and formation of germinate pairs. To create a bulk heterojunction where a built-in electric field could assist the charge separation, a TiO<sub>2</sub> porous structure with the pore size matching with the depletion width was fabricated and successfully in-filled by PbS QDs. The porous device produces 5.7% power conversion efficiency, among one of the highest in literature. The enhancement comes from increased light absorption and suppression of charge recombination.
14

Ultrafast charge dynamics in novel colloidal quantum dots

Cadirci, Musa January 2014 (has links)
In this thesis ultrafast exciton dynamics of several colloidal quantum dots have been studied using visible transient absorption spectroscopy. The resultant transient decays and differential transmission spectra were analysed to determine the ultrafast relaxation channels, multiple exciton generation (MEG) efficiency and multi-exciton interactions in the observed materials. All QDs were preliminarily optically characterized using steady state absorption and photoluminescence spectroscopies. In addition, a high repetition infrared femtosecond pump probe experiment was designed and built to detect the picosecond intraband carrier relaxations in quantum dots. Picosecond carrier dynamics of type-II ZnTe/ZnSe and of CuInSe2 and CuInS2 type-I quantum dots were investigated. The common feature of these materials is that they are eco-friendly materials, being alternatives to the toxic Cd- and Pb- based materials. It was found that surface trapping occurred in both cases for electrons in the hot states, and in the minimum of the conduction band for ZnTe/ZnSe core/shell materials. Trion formation was observed in ZnTe/ZnSe core/shell dots at high power and unstirred conditions. The hot and cold electron trapping processes in type-II dots and CuInS2 and CuInSe2 dots shifted, distorted and moderately cancelled the bleach features. In addition, intra-gap hole trapping was observed in CuInS2 and CuInSe2 dots which results in a long decay feature in the recorded transients. MEG competes with Auger cooling, surface mediated relaxation and phonon emission. To enhance the MEG quantum yield, the rival mechanisms were suppressed in well-engineered CdSe/CdTe/CdS and CdTe/CdSe/CdS core/shell/shell and CdTe/CdS core/shell type-II quantum dots. The MEG slope efficiency and threshold for a range of different core size and shell thickness were found to be (142±9)%/Eg and (2.59±0.16)Eg, respectively. The observed threshold was consistent with the literature, whereas, the obtained slope efficiency was about three times higher than the previously reported values. The biexciton interaction energy of the dots stated in the previous paragraph was also studied. To date, time-resolved photoluminescence (TRPL) has been employed to study exciton interactions in type-II quantum dots and large repulsive biexciton interaction energy values between 50-100 meV have been reported. However, unlike the TRPL method, the TA experiment ensures that only two excitons remain in the band edge of the dot. Using this method, large attractive biexciton interaction energies up to ~-60 meV was observed. These results have promising implications regarding enhancing the MEG quantum yield.
15

Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots

Osipovich, Nikolai P., Poznyak, Sergei K., Lesnyak, Vladimir, Gaponik, Nikolai 13 January 2020 (has links)
The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.
16

PHOTOMULTIPLICAITON EFFECT IN ORGANIC AND QUANTUM DOT PHOTODETECTOR AND DEVICE STRUCTURAL MOTIFICATION

Yang, Chen, Yang January 2017 (has links)
No description available.
17

Nanoparticules semi-conductrices et plasmoniques comme sondes locales de l’environnement diélectrique / Semiconductor and plasmonic nanoparticles as local probes of the dielectric environment

Aubret, Antoine 23 October 2015 (has links)
Sonder la matière en utilisant des nanoparticules luminescentes nécessite une compréhension de chaque processus pouvant modifier leurs propriétés optiques. Cette thèse se focalise sur l'influence de l'environnement diélectrique sur la luminescence de deux types de nanoobjets : (i) des boites quantiques colloïdales (QDs), et (ii) des nanobâtonnets d'or. L'objectif est d'évaluer les potentialités de ces nanostructures comme sondes locales de l'environnement diélectrique.L'évolution de la dynamique de relaxation de QDs dans différents environnements diélectriques est interprétée en terme d'indice de réfraction effectif local. Cette étude montre qu'une analyse détaillée de la sensibilité des QDs à l'environnement permet de les utiliser comme nanosondes biologiques d'indice de réfraction. Nous présentons également une nouvelle méthode pour l'encapsulation de QDs en matrice diélectrique solide, à travers le dépôt par laser pulsé. Les émetteurs peuvent être protégés par des films minces et subir des perturbations non-destructives et réversibles de leur environnement proche, à l'échelle de la particule unique, tout en analysant la dynamique de fluorescence. Finalement, la sensibilité de la résonance plasmon de nanobâtonnets d'or à l'approche d'une interface diélectrique est également sondée, puis comparée a celle des boites quantiques / Probing systems using luminescent nanoparticles requires the understanding of all the processes that influence the luminescence properties. This thesis focuses on the influence of the dielectric environment on the luminescence of two types of nanoparticles : (i) colloidal quantum dots (QDs), and (ii) gold nanorods. The aim of this work is to evaluate the potential of these nanostructures to act as local probes of the dielectric environment. The evolution of the relaxation dynamics of QDs in various dielectric media is interpreted in terms of local effective refractive index. This work shows that a detailed analysis of the sensitivity of the QDs to the environment allows their use as biological nanoprobes of refractive index. We furthermore present a new method for the encapsulation of QDs in a solid dielectric matrix, using pulsed laser deposition. The emitters can be incorporated in thin films and their local environment can be modified in a reversible and non-destructive way, while the emission dynamics is investigated at the single emitter level. Finally, the sensitivity of the surface plasmon resonance of gold nanorods to an approching dielectric interface is also studied, and compared to the one found for QDs
18

Infrared Emitting PbS Nanocrystals through Matrix Encapsulation

Liyanage, Geethika Kaushalya 03 July 2014 (has links)
No description available.
19

Quantum structures in photovoltaic devices

Holder, Jenna Ka Ling January 2013 (has links)
A study of three novel solar cells is presented, all of which incorporate a low-dimensional quantum confined component in a bid to enhance device performance. Firstly, intermediate band solar cells (IBSCs) based on InAs quantum dots (QDs) in a GaAs p-i-n structure are studied. The aim is to isolate the InAs QDs from the GaAs conduction band by surrounding them with wider band gap aluminium arsenide. An increase in open circuit voltage (V<sub>OC</sub>) and decrease in short circuit current (J<sub>sc</sub>) is observed, causing no overall change in power conversion efficiency. Dark current - voltage measurements show that the increase in V<sub>OC</sub> is due to reduced recombination. Electroreflectance and external quantum efficiency measurements attribute the decrease in J<sub>sc</sub> primarily to a reduction in InGaAs states between the InAs QD and GaAs which act as an extraction pathway for charges in the control device. A colloidal quantum dot (CQD) bulk heterojunction (BHJ) solar cell composed of a blend of PbS CQDs and ZnO nanoparticles is examined next. The aim of the BHJ is to increase charge separation by increasing the heterojunction interface. Different concentration ratios of each phase are tested and show no change in J<sub>sc</sub>, due primarily to poor overall charge transport in the blend. V<sub>OC</sub> increases for a 30 wt% ZnO blend, and this is attributed largely to a reduction in shunt resistance in the BHJ devices. Finally, graphene is compared to indium tin oxide (ITO) as an alternative transparent electrode in squaraine/ C<sub>70</sub> solar cells. Due to graphene’s high transparency, graphene devices have enhanced J<sub>sc</sub>, however, its poor sheet resistance increases the series resistance through the device, leading to a poorer fill factor. V<sub>OC</sub> is raised by using MoO<sub>3</sub> as a hole blocking layer. Absorption in the squaraine layer is found to be more conducive to current extraction than in the C<sub>70</sub> layer. This is due to better matching of exciton diffusion length and layer thickness in the squaraine and to the minority carrier blocking layer adjacent to the squaraine being more effective than the one adjacent to the C<sub>70</sub>.

Page generated in 0.0559 seconds