Spelling suggestions: "subject:"compact model"" "subject:"compact godel""
11 |
Modélisation compacte et conception de circuit à base de jonction tunnel ferroélectrique et de jonction tunnel magnétique exploitant le transfert de spin assisté par effet Hall de spin / Compact modeling and circuit design based on ferroelectric tunnel junction and spin-Hall-assisted spin-transfer torqueWang, Zhaohao 14 October 2015 (has links)
Les mémoires non-volatiles (MNV) sont l'objet d'un effort de recherche croissant du fait de leur capacité à limiter la consommation statique, qui obère habituellement la réduction des dimensions dans la technologie CMOS. Dans ce contexte, cette thèse aborde plus spécifiquement deux technologies de mémoires non volatiles : d'une part les jonctions tunnel ferroélectriques (JTF), dispositif non volatil émergent, et d'autre part les dispositifs à transfert de spin (TS) assisté par effet Hall de spin (EHS), approche alternative proposée récemment pour écrire les jonctions tunnel magnétiques (JTM). Mon objectif est de développer des modèles compacts pour ces deux technologies et d'explorer, par simulation, leur intégration dans les circuits non-volatiles.J'ai d'abord étudié les modèles physiques qui décrivent les comportements électriques des JTF : la résistance tunnel, la dynamique de la commutation ferroélectrique et leur comportement memristif. La précision de ces modèles physiques est validée par leur bonne adéquation avec les résultats expérimentaux. Afin de proposer un modèle compatible avec les simulateurs électriques standards, nous j'ai développé les modèles physiques mentionnés ci-dessus en langue Verilog-A, puis je les ai intégrés ensemble. Le modèle électrique que j'ai conçu peut être exploité sur la plate-forme Cadence (un outil standard pour la simulation de circuit). Il reproduit fidèlement les comportements de JTF. Ensuite, en utilisant ce modèle de JTF et le design-kit CMOS de STMicroelectronics, j'ai conçu et simulé trois types de circuits: i) une mémoire vive (RAM) basée sur les JTF, ii) deux systèmes neuromorphiques basés sur les JTF, l'un qui émule la règle d'apprentissage de la plasticité synaptique basée sur le décalage temporel des impulsions neuronale (STDP), l'autre mettant en œuvre l'apprentissage supervisé de fonctions logiques, iii) un bloc logique booléen basé sur les JTF, y compris la démonstration des fonctions logiques NAND et NOR. L'influence des paramètres de la JTF sur les performances de ces circuits a été analysée par simulation. Finalement, nous avons modélisé la dynamique de renversement de l'aimantation dans les dispositifs à anisotropie perpendiculaire à transfert de spin assisté par effet Hall de spin dans un JTM à trois terminaux. Dans ce schéma, deux courants d'écriture sont appliqués pour générer l'EHS et le TS. La simulation numérique basée sur l'équation de Landau-Lifshitz-Gilbert (LLG) démontre que le délai d'incubation de TS peut être éliminé par un fort EHS, conduisant à la commutation ultra-rapide de l'aimantation, sans pour autant requérir une augmentation excessive du TS. Nous avons appliqué cette nouvelle méthode d'écriture à la conception d'une bascule magnétique et d'un additionneur 1 bit magnétique. Les performances des circuits magnétiques assistés par l'EHS ont été comparés à ceux écrits par transfert de spin, par simulation et par une analyse fondée sur le modèle théorique. / Non-volatile memory (NVM) devices have been attracting intensive research interest since they promise to solve the increasing static power issue caused by CMOS technology scaling. This thesis focuses on two fields related to NVM: the one is the ferroelectric tunnel junction (FTJ), which is a recent emerging NVM device. The other is the spin-Hall-assisted spin-transfer torque (STT), which is a recent proposed write approach for the magnetic tunnel junction (MTJ). Our objective is to develop the compact models for these two technologies and to explore their application in the non-volatile circuits through simulation.First, we investigated physical models describing the electrical behaviors of the FTJ such as tunneling resistance, dynamic ferroelectric switching and memristive response. The accuracy of these physical models is validated by a good agreement with experimental results. In order to develop an electrical model available for the circuit simulation, we programmed the aforementioned physical models with Verilog-A language and integrated them together. The developed electrical model can run on Cadence platform (a standard circuit simulation tool) and faithfully reproduce the behaviors of the FTJ.Then, using the developed FTJ model and STMicroelectronics CMOS design kit, we designed and simulated three types of circuits: i) FTJ-based random access memory (FTRAM), ii) two FTJ-based neuromorphic systems, one of which emulates spike-timing dependent plasticity (STDP) learning rule, the other implements supervised learning of logic functions, iii) FTJ-based Boolean logic block, by which NAND and NOR logic are demonstrated. The influences of the FTJ parameters on the performance of these circuits were analyzed based on simulation results.Finally, we focused on the reversal of the perpendicular magnetization driven by spin-Hall-assisted STT in a three-terminal MTJ. In this scheme, two write currents are applied to generate spin-Hall effect (SHE) and STT. Numerical simulation based on Landau-Lifshitz-Gilbert (LLG) equation demonstrates that the incubation delay of the STT can be eliminated by the strong SHE, resulting in ultrafast magnetization switching without the need to strengthen the STT. We applied this novel write approach to the design of the magnetic flip-flop and full-adder. Performance comparison between the spin-Hall-assisted and the conventional STT magnetic circuits were discussed based on simulation results and theoretical models.
|
12 |
Analyse de fiabilité de circuits logiques et de mémoire basés sur dispositif spintronique / Reliability analysis of spintronic device based logic and memory circuitsWang, You 13 February 2017 (has links)
La jonction tunnel magnétique (JTM) commutée par la couple de transfert de spin (STT) a été considérée comme un candidat prometteur pour la prochaine génération de mémoires non-volatiles et de circuits logiques, car elle fournit une solution pour surmonter le goulet d'étranglement de l'augmentation de puissance statique causée par la mise à l'échelle de la technologie CMOS. Cependant, sa commercialisation est limitée par la fiabilité faible, qui se détériore gravement avec la réduction de la taille du dispositif. Cette thèse porte sur l'étude de la fiabilité des circuits basés sur JTM. Tout d'abord, un modèle compact de JTM incluant les problèmes principaux de fiabilité est proposé et validé par la comparaison avec des données expérimentales. Sur la base de ce modèle précis, la fiabilité des circuits typiques est analysée et une méthodologie d'optimisation de la fiabilité est proposée. Enfin, le comportement de commutation stochastique est utilisé dans certaines nouvelles conceptions d'applications classiques. / Spin transfer torque magnetic tunnel junction (STT-MTJ) has been considered as a promising candidate for next generation of non-volatile memories and logic circuits, because it provides a perfect solution to overcome the bottleneck of increasing static power caused by CMOS technology scaling. However, its commercialization is limited by the poor reliability, which deteriorates severely with device scaling down. This thesis focuses on the reliability investigation of MTJ based non-volatile circuits. Firstly, a compact model of MTJ including main reliability issues is proposed and validated by the comparison with experimental data. Based on this accurate model, the reliability of typical circuits is analyzed and reliability optimization methodology is proposed. Finally, the stochastic switching behavior is utilized in some new designs of conventional applications.
|
13 |
Multi-scale modeling of radiation effects for emerging space electronics : from transistors to chips in orbit / Modélisation multi-échelle des effets radiatifs pour l'électronique spatiale émergente : des transistors aux puces en orbiteMalherbe, Victor 17 December 2018 (has links)
En raison de leur impact sur la fiabilité des systèmes, les effets du rayonnement cosmique sur l’électronique ont été étudiés dès le début de l’exploration spatiale. Néanmoins, de récentes évolutions industrielles bouleversent les pratiques dans le domaine, les technologies standard devenant de plus en plus attrayantes pour réaliser des circuits durcis aux radiations. Du fait de leurs fréquences élevées, des nouvelles architectures de transistor et des temps de durcissement réduits, les puces fabriquées suivant les derniers procédés CMOS posent de nombreux défis. Ce travail s’attelle donc à la simulation des aléas logiques permanents (SEU) et transitoires (SET), en technologies FD-SOI et bulk Si avancées. La réponse radiative des transistors FD-SOI 28 nm est tout d’abord étudiée par le biais de simulations TCAD, amenant au développement de deux modèles innovants pour décrire les courants induits par particules ionisantes en FD-SOI. Le premier est principalement comportemental, tandis que le second capture des phénomènes complexes tels que l’amplification bipolaire parasite et la rétroaction du circuit, à partir des premiers principes de semi-conducteurs et en accord avec les simulations TCAD poussées.Ces modèles compacts sont alors couplés à une plateforme de simulation Monte Carlo du taux d’erreurs radiatives (SER) conduisant à une large validation sur des données expérimentales recueillies sous faisceau de particules. Enfin, des études par simulation prédictive sont présentées sur des cellules mémoire et portes logiques en FD-SOI 28 nm et bulk Si 65 nm, permettant d’approfondir la compréhension des mécanismes contribuant au SER en orbite des circuits intégrés modernes / The effects of cosmic radiation on electronics have been studied since the early days of space exploration, given the severe reliability constraints arising from harsh space environments. However, recent evolutions in the space industry landscape are changing radiation effects practices and methodologies, with mainstream technologies becoming increasingly attractive for radiation-hardened integrated circuits. Due to their high operating frequencies, new transistor architectures, and short rad-hard development times, chips manufactured in latest CMOS processes pose a variety of challenges, both from an experimental standpoint and for modeling perspectives. This work thus focuses on simulating single-event upsets and transients in advanced FD-SOI and bulk silicon processes.The soft-error response of 28 nm FD-SOI transistors is first investigated through TCAD simulations, allowing to develop two innovative models for radiation-induced currents in FD-SOI. One of them is mainly behavioral, while the other captures complex phenomena, such as parasitic bipolar amplification and circuit feedback effects, from first semiconductor principles and in agreement with detailed TCAD simulations.These compact models are then interfaced to a complete Monte Carlo Soft-Error Rate (SER) simulation platform, leading to extensive validation against experimental data collected on several test vehicles under accelerated particle beams. Finally, predictive simulation studies are presented on bit-cells, sequential and combinational logic gates in 28 nm FD-SOI and 65 nm bulk Si, providing insights into the mechanisms that contribute to the SER of modern integrated circuits in orbit
|
Page generated in 0.0644 seconds