• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 29
  • 10
  • 9
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 50
  • 43
  • 38
  • 26
  • 25
  • 23
  • 20
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Controle de força de um servoatuador hidráulico através da técnica de linearização por realimentação

Serrano, Miguel Ignácio January 2007 (has links)
Os atuadores hidráulicos são usados em muitas aplicações e áreas de trabalho devido à sua capacidade para manipular grandes forças com baixa inércia, pouca vibração e capacidade de trabalho por longos períodos de tempo. Entretanto, o maior problema no uso destes tipos de atuadores são as características dinâmicas tais como não-linearidade e variação de parâmetros, as quais dificultam seu controle em malha fechada. Assim, para controlar sistemas hidráulicos, é necessário o uso de modelos matemáticos não lineares e a aplicação de leis de controle complexas para obter um seguimento de trajetória com alta precisão. O objetivo principal deste trabalho é a obtenção de um sistema que siga com precisão as trajetórias de referência do tipo senoidais. Para tanto, este trabalho aborda o projeto de uma lei de controle por realimentação de estados (feedback linearization) combinada com o princípio do modelo interno para aplicar no sistema hidráulico de atuação de uma máquina de ensaios de fadiga. O princípio do modelo interno é aplicado utilizando um compensador dinâmico (que contém pólos imaginários com a mesma freqüência que o sinal de referência) num laço externo do sistema linearizado por realimentação de estados. Uma lei de controle do tipo realimentação de estados, considerando os estados do sistema linearizado e os do compensador dinâmico, é projetada para garantir estabilidade no sistema de malha fechada. A fim de avaliar a estratégia de controle proposta são discutidos e apresentados simulações do modelo experimental. / Hydraulic actuators are used in many applications due to their ability in driving large forces with low inertia and little vibration for a long period of time. However, the main problem in controlling these kinds of systems concerns their dynamics, which presents several nonlinearities and parameters variations. Thus, to control hydraulic systems, appropriated nonlinear models and complex control techniques to achieve a stable force regulation with a specified performance are necessary. The purpose of this work is the application of a feedback linearization scheme in the design of a force controller for a hydraulic actuator used in a fatigue test machine. The main control objective considered regards the achievement of sinusoidal force reference tracking. With this aim the internal model principle is applied by using a dynamic compensator (containing imaginary poles with the same frequency of the force reference) in an outer regulation loop. A state feedback control law, considering both the states of the feedback linearized hydraulic system and the ones of the dynamic compensator, is therefore designed in order to stabilize the whole closed-loop system. Experimental model identification and simulation control results are presented and discussed.
32

Modelling and Control of a Forklift’s Hydraulic Lowering Function

Fahlén, Daniel, Fri, Ludvig January 2017 (has links)
Material handling and logistics are fundamental parts of today’s global societyand forklifts are a crucial part of the material handling process. Making these asefficient and reliable as possible are therefore of great interest. In this master thesis, an effort has been made to improve the control of the hydraulic lowering function of a specific forklift. Today the lowering function iscontrolled through an open-loop control scheme making the control performancesensitive to disturbances and system changes. One disturbance of special interestis the temperature of the hydraulic fluid. The goal of this thesis was therefore todesign a controller with improved robustness as well as improved performance. To solve this a model-based control design approach was used and a nonlineargrey-box model was derived, implemented and validated. The model parameterswere estimated using a nonlinear least-squares optimisation problem. The resulting model captures most of the system dynamics and the model fit is higher than 70% which was deemed good enough to use for control design. A PID controller was designed based on the estimated model and the controllerparameters were optimised. Furthermore, the controller was evaluated in simulations and implemented in a real forklift. The proposed controller was compared to the original controller for various scenarios. The results reveal improvedsteady state behaviour with enhanced temperature robustness compared to theoriginal controller. / Materialhantering och logistik är viktigt för att dagens globala samhälle ska fungera. En grundläggande del i materialhanteringsprocessen är gaffeltruckar, därför är det av intresse att göra gaffeltruckar så effektiva och pålitliga som möjligt. I det här examensarbetet har ett försök gjorts till att förbättra styrningen av den hydrauliska sänkningsfunktionen hos en specifik gaffeltruck. Dagens lösning använder sig av öppen styrning vilket gör reglerprestandan känslig för störningar och systemförändringar. En störning av extra intresse är temperaturen av hydraulvätskan. Målet med detta arbete var därför att designa en regulator med ökad robusthet och prestanda. För att lösa detta har en modellbaserad metod för regulatordesign använts där en olinjär gray-box modell härleddes, implementerades och validerades. Modellparametrarna skattades genom att ställa upp och lösa ett ickelinjärt minsta-kvadrat optimeringsproblem. Den resulterande modellen fångar det mesta av systemdynamiken och modellpassningen till uppmätt data var högre än 70\% vilket ansågs bra nog för att kunna använda modellen som en bas för regulatordesign. En PID regulator designades och regulatorparametrarna optimerades med hjälp av modellen. Regulatorn utvärderades i simuleringar och för att sedan implementeras den på en riktig gaffeltruck. Den föreslagna regulatorn jämfördes med den ursprungliga regulatorn i flera olika testfall. Resultaten visade ett bättre steady-state beteende och ökad robusthet mot temperaturförändringar för den designade regulatorn jämfört med den ursprungliga regulatorn.
33

Characteristics of Proportional Flow Control Poppet Valve with Pilot Pressure Compensation

Huang, Jiahai, Quan, Long, Gao, Youshan January 2016 (has links)
Electro-hydraulic proportional flow valves are widely used in hydraulic industry. There are several different structures and working principles. However, flow valves based on the existing principles usually have some shortcomings such as the complexity of the system and additional energy losses. A concept for a two-stage poppet flow valve with pilot pressure drop – pilot spool opening compensation is presented, and the linear relationship between the pilot stage and main stage, the semi-empirical flow equation are used in the electronic flow controller. To achieve the accurate control of the outlet flow, the actual input voltage of the pilot spool valve is regulated according to the actual pilot pressure drop, the desired flow rate and the given input voltage. The results show that the pilot pressure drop – pilot spool opening compensation method is feasible, and the proposed proportional flow control valve with this compensation method has a good static and dynamic performance.
34

A Direct Compensator Profile Optimization Approach For Intensity Modulated Radiation Treatment Planning

Erhart, Kevin 01 January 2009 (has links)
Radiation therapy accounts for treatment of over one million cancer patients each year in the United States alone, and its use will continue to grow rapidly in the coming years. Recently, many important advancements have been developed that greatly improve the outcomes and effectiveness of this treatment technique, the most notable being Intensity Modulated Radiation Therapy (IMRT). IMRT is a sophisticated treatment technique where the radiation dose is conformed to the tumor volume, thereby sparing nearby healthy tissue from excessive radiation dose. While IMRT is a valuable tool in the planning of radiation treatments, it is not without its difficulties. This research has created, developed, and tested an innovative approach to IMRT treatment planning, coined Direct Compensator Profile Optimization (DCPO), which is shown to eliminate many of the difficulties typically associated with IMRT planning and delivery using solid compensator based treatment. The major innovation of this technique is that it is a direct delivery parameter optimization approach which has adopted a parameterized surface representation using Non-Uniform Rational B-Splines (NURBs) to replace the conventional beamlet weight optimization approach. This new approach brings with it three key advantages: 1) a reduced number of parameters to optimize, reducing the difficulty of numerical optimization; 2) the ability to ensure complete equivalence of planned and actual manufactured compensators; and 3) direct inclusion of delivery device effects during planning with no performance penalties, eliminating the degrading fluence-to-delivery parameter conversion process. Detailed research into the affects of the DCPO approach on IMRT planning has been completed and a thorough analysis of the developments is provided herein. This research includes a complete description of the DCPO surface representation scheme, inverse planning process, as well as quantification of the manufacturing constraint control procedure. Results are presented which demonstrate the performance and innovation offered by this new approach and show that the resulting compensator shapes can be manufactured to nearly 100 percent of the designed shape.
35

Thyristor Switched Capacitor Mitigation System for Customer Side Applications

Taylor, Jason Ashley 11 May 2002 (has links)
Thyristor switched capacitors (TSCs) have found an ever increasing role in the operation of flexible AC transmission systems or FACTS. The ability of these static var compensators to regulate the voltage by consuming or supplying reactive power quickly is not only viable for transmission but is an effective measure for increasing power quality at a distribution level. The proposed design uses a variable number of logically switched capacitors to supply reactive generation per reactive demand. The design ensures that the capacitors are safely switched into service, reactive demand is accurately calculated, and the TSC will respond quickly to changes in demand. While providing fast and safe operation, the conceptual design is also flexible enough to allow for optimization of the TSC to meet the demands of specific loads.
36

Electromagnetic Transient and Dynamic Modeling and Simulation of a StatCom-SMES Compensator in Power Systems

Arsoy, Aysen 28 April 2000 (has links)
Electromagnetic transient and dynamic modeling and simulation studies are presented for a StatCom-SMES compensator in power systems. The transient study aims to better understand the transient process and interaction between a high power/high voltage SMES coil and its power electronics interface, dc-dc chopper. The chopper is used to attach the SMES coil to a StatCom. Following the transient study, the integration of a StatCom with SMES was explored to demonstrate the effectiveness of the combined compensator in damping power oscillations. The transient simulation package PSCAD/EMTDC has been used to perform the integrated modeling and simulation studies. A state of the art review of SMES technology was conducted. Its applications in power systems were discussed chronologically. The cost effective and feasible applications of this technology were identified. Incorporation of a SMES coil into an existing StatCom controller is one of the feasible applications, which can provide improved StatCom operation, and therefore much more flexible and controllable power system operation. The SMES coil with the following unique design characteristics of 50MW (96 MW peak), 100 MJ, 24 kV interface has been used in this study. As a consequence of the high power/ high voltage interface, special care needs to be taken with overvoltages that can stress the insulation of the coil. This requires an investigation of transient overvoltages through a detailed modeling of SMES and its power electronics interface. The electrical model for the SMES coil was developed based on geometrical dimensions of the coil. The interaction between the SMES coil and its power electronics interface (dc-dc chopper for the integration to StatCom) was modeled and simulated to identify transient overvoltages. Transient suppression schemes were developed to reduce these overvoltages. Among these are MOV implementation, surge capacitors, different configurations of the dc-dc chopper. The integration of the SMES coil to a StatCom controller was developed, and its dynamic behavior in damping oscillations following a three-phase fault was investigated through a number of simulation case studies. The results showed that the addition of energy storage to a StatCom controller can improve the StatCom-alone operation and can possibly reduce the MVA rating requirement for the StatCom operating alone. The effective location selection of a StatCom-SMES controller in a generic power system is also discussed. / Ph. D.
37

Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions : an investigation of the behaviour of a UPFC controller : the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions

Jalboub, Mohamed January 2012 (has links)
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse. Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions.
38

Investigations On Small Signal Stability Of Power Systems Affected By FACTS Supplementary Modulation Controllers

Saikumar, H V 09 1900 (has links) (PDF)
No description available.
39

Performance Evaluation Of Distance Relays For FACTS Compensated Transmission Lines

Maturu, Suresh 03 1900 (has links) (PDF)
With limited enhancement or expansion of the transmission infrastructure, the contemporary power systems are operating under more stressed conditions. It becomes important to fully utilize the existing transmission system to supply load demand as much as possible, thus eliminating or reducing the need for new transmission investment. Flexible AC Transmission System (FACTS) technology provides an alternative to fully utilize the existing transmission lines as well as new and upgraded lines, by controlling power and also enhancing the power transfer capability of transmission lines. However, the implementation of FACTS controllers in the transmission system has introduced new power system dynamics that must be addressed in the area of power system protection, such as rapid changes in line impedance, power angle, line currents, transients introduced by the occurrence of fault and associated control action of the FACTS controller. Therefore, the performance of the protection system must be carefully analyzed in the presence of FACTS controllers. The thesis aims at evaluating the performance of distance relays when different types of FACTS controllers, in particular Voltage Source Converter (VSC) based FACTS controllers, are incorporated at the midpoint of the transmission system to achieve voltage profile improvement and power transfer capability. The detailed models of these controllers and their control strategies are described. The presence of FACTS controllers in the loop affects both steady state and transient components of voltage and current signals. The rapid response of FACTS controllers to different power system configurations significantly affects the apparent impedance seen by distance relays. The apparent impedance seen by distance relays would be different from that of the system without FACTS controller. Due to this, the distance relay may malfunction, resulting in unreliable operation of the power system during faults. Furthermore, the effect of FACTS controllers on distance relay operation depends on the type of FACTS controller used, the application for which it has been installed and its location in the power system. The distance relay is evaluated for different loading conditions and for various fault conditions. Simulation studies are carried out using PSCAD/EMTDC based transient simulation package.
40

Investigation of the application of UPFC controllers for weak bus systems subjected to fault conditions. An investigation of the behaviour of a UPFC controller: the voltage stability and power transfer capability of the network and the effect of the position of unsymmetrical fault conditions.

Jalboub, Mohamed K. January 2012 (has links)
In order to identify the weakest bus in a power system so that the Unified Power Flow Controller could be connected, an investigation of static and dynamic voltage stability is presented. Two stability indices, static and dynamic, have been proposed in the thesis. Multi-Input Multi-Output (MIMO) analysis has been used for the dynamic stability analysis. Results based on the Western System Coordinate Council (WSCC) 3-machine, 9-bus test system and IEEE 14 bus Reliability Test System (RTS) shows that these indices detect with the degree of accuracy the weakest bus, the weakest line and the voltage stability margin in the test system before suffering from voltage collapse. Recently, Flexible Alternating Current Transmission systems (FACTs) have become significant due to the need to strengthen existing power systems. The UPFC has been identified in literature as the most comprehensive and complex FACTs equipment that has emerged for the control and optimization of power flow in AC transmission systems. Significant research has been done on the UPFC. However, the extent of UPFC capability, connected to the weakest bus in maintaining the power flows under fault conditions, not only in the line where it is installed, but also in adjacent parallel lines, remains to be studied. In the literature, it has normally been assumed the UPFC is disconnected during a fault period. In this investigation it has been shown that fault conditions can affect the UPFC significantly, even if it occurred on far buses of the power system. This forms the main contribution presented in this thesis. The impact of UPFC in minimizing the disturbances in voltages, currents and power flows under fault conditions are investigated. The WSCC 3-machine, 9-bus test system is used to investigate the effect of an unsymmetrical fault type and position on the operation of UPFC controller in accordance to the G59 protection, stability and regulation. Results show that it is necessary to disconnect the UPFC controller from the power system during unsymmetrical fault conditions. / Libyan Government

Page generated in 0.0406 seconds