Spelling suggestions: "subject:"complexité dde lla communication"" "subject:"complexité dde laa communication""
1 |
Complexité de la communication sur un canal avec délaiLapointe, Rébecca 02 1900 (has links)
Nous introduisons un nouveau modèle de la communication à deux parties dans lequel nous nous intéressons au temps que prennent deux participants à effectuer une tâche à travers un canal avec délai d. Nous établissons quelques bornes supérieures et inférieures et comparons ce nouveau modèle aux modèles de communication classiques et quantiques étudiés dans la littérature. Nous montrons que la complexité de la communication d’une fonction sur un canal avec délai est bornée supérieurement par sa complexité de la communication modulo un facteur multiplicatif d/ lg d. Nous présentons ensuite quelques exemples de fonctions pour lesquelles une stratégie astucieuse se servant du temps mort confère un avantage sur une implémentation naïve d’un protocole de communication optimal en terme de complexité de la communication. Finalement, nous montrons qu’un canal avec délai permet de réaliser un échange de bit cryptographique, mais que, par lui-même, est insuffisant pour réaliser la primitive cryptographique de transfert équivoque. / We introduce a new communication complexity model in which we want to determine how much time of communication is needed by two players in order to execute arbitrary tasks on a channel with delay d. We establish a few basic lower and upper bounds and compare this new model to existing models such as the classical and quantum two-party models of communication. We show that the standard communication complexity of a function, modulo a factor of d/ lg d, constitutes an upper bound to its communication complexity on a delayed channel. We introduce a few examples on which a clever strategy depending on the delay procures a significant advantage over the naïve implementation of an optimal communication protocol. We then show that a delayed channel can be used to implement a cryptographic bit swap, but is insufficient on its own to implement an oblivious transfer scheme.
|
2 |
Complexité de la communication sur un canal avec délaiLapointe, Rébecca 02 1900 (has links)
Nous introduisons un nouveau modèle de la communication à deux parties dans lequel nous nous intéressons au temps que prennent deux participants à effectuer une tâche à travers un canal avec délai d. Nous établissons quelques bornes supérieures et inférieures et comparons ce nouveau modèle aux modèles de communication classiques et quantiques étudiés dans la littérature. Nous montrons que la complexité de la communication d’une fonction sur un canal avec délai est bornée supérieurement par sa complexité de la communication modulo un facteur multiplicatif d/ lg d. Nous présentons ensuite quelques exemples de fonctions pour lesquelles une stratégie astucieuse se servant du temps mort confère un avantage sur une implémentation naïve d’un protocole de communication optimal en terme de complexité de la communication. Finalement, nous montrons qu’un canal avec délai permet de réaliser un échange de bit cryptographique, mais que, par lui-même, est insuffisant pour réaliser la primitive cryptographique de transfert équivoque. / We introduce a new communication complexity model in which we want to determine how much time of communication is needed by two players in order to execute arbitrary tasks on a channel with delay d. We establish a few basic lower and upper bounds and compare this new model to existing models such as the classical and quantum two-party models of communication. We show that the standard communication complexity of a function, modulo a factor of d/ lg d, constitutes an upper bound to its communication complexity on a delayed channel. We introduce a few examples on which a clever strategy depending on the delay procures a significant advantage over the naïve implementation of an optimal communication protocol. We then show that a delayed channel can be used to implement a cryptographic bit swap, but is insufficient on its own to implement an oblivious transfer scheme.
|
3 |
Intrication & non-localitéMéthot, André Allan January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
4 |
Quantum pseudo-telepathy gamesBroadbent, Anne Lise January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
5 |
Computations on Massive Data Sets : Streaming Algorithms and Two-party Communication / Calculs sur des grosses données : algorithmes de streaming et communication entre deux joueursKonrad, Christian 05 July 2013 (has links)
Dans cette thèse on considère deux modèles de calcul qui abordent des problèmes qui se posent lors du traitement des grosses données. Le premier modèle est le modèle de streaming. Lors du traitement des grosses données, un accès aux données de façon aléatoire est trop couteux. Les algorithmes de streaming ont un accès restreint aux données: ils lisent les données de façon séquentielle (par passage) une fois ou peu de fois. De plus, les algorithmes de streaming utilisent une mémoire d'accès aléatoire de taille sous-linéaire dans la taille des données. Le deuxième modèle est le modèle de communication. Lors du traitement des données par plusieurs entités de calcul situées à des endroits différents, l'échange des messages pour la synchronisation de leurs calculs est souvent un goulet d'étranglement. Il est donc préférable de minimiser la quantité de communication. Un modèle particulier est la communication à sens unique entre deux participants. Dans ce modèle, deux participants calculent un résultat en fonction des données qui sont partagées entre eux et la communication se réduit à un seul message. On étudie les problèmes suivants: 1) Les couplages dans le modèle de streaming. L'entrée du problème est un flux d'arêtes d'un graphe G=(V,E) avec n=|V|. On recherche un algorithme de streaming qui calcule un couplage de grande taille en utilisant une mémoire de taille O(n polylog n). L'algorithme glouton remplit ces contraintes et calcule un couplage de taille au moins 1/2 fois la taille d'un couplage maximum. Une question ouverte depuis longtemps demande si l'algorithme glouton est optimal si aucune hypothèse sur l'ordre des arêtes dans le flux est faite. Nous montrons qu'il y a un meilleur algorithme que l'algorithme glouton si les arêtes du graphe sont dans un ordre uniformément aléatoire. De plus, nous montrons qu'avec deux passages on peut calculer un couplage de taille strictement supérieur à 1/2 fois la taille d'un couplage maximum sans contraintes sur l'ordre des arêtes. 2) Les semi-couplages en streaming et en communication. Un semi-couplage dans un graphe biparti G=(A,B,E) est un sous-ensemble d'arêtes qui couple tous les sommets de type A exactement une fois aux sommets de type B de façon pas forcement injective. L'objectif est de minimiser le nombre de sommets de type A qui sont couplés aux même sommets de type B. Pour ce problème, nous montrons un algorithme qui, pour tout 0<=ε<=1, calcule une O(n^((1-ε)/2))-approximation en utilisant une mémoire de taille Ô(n^(1+ε)). De plus, nous montrons des bornes supérieures et des bornes inférieurs pour la complexité de communication entre deux participants pour ce problème et des nouveaux résultats concernant la structure des semi-couplages. 3) Validité des fichiers XML dans le modèle de streaming. Un fichier XML de taille n est une séquence de balises ouvrantes et fermantes. Une DTD est un ensemble de contraintes de validité locales d'un fichier XML. Nous étudions des algorithmes de streaming pour tester si un fichier XML satisfait les contraintes décrites dans une DTD. Notre résultat principal est un algorithme de streaming qui fait O(log n) passages, utilise 3 flux auxiliaires et une mémoire de taille O(log^2 n). De plus, pour le problème de validation des fichiers XML qui décrivent des arbres binaires, nous présentons des algorithmes en un passage et deux passages qui une mémoire de taille sous-linéaire. 4) Correction d'erreur pour la distance du cantonnier. Alice et Bob ont des ensembles de n points sur une grille en d dimensions. Alice envoit un échantillon de petite taille à Bob qui, après réception, déplace ses points pour que la distance du cantonnier entre les points d'Alice et les points de Bob diminue. Pour tout k>0 nous montrons qu'il y a un protocole presque optimal de communication avec coût de communication Ô(kd) tel que les déplacements des points effectués par Bob aboutissent à un facteur d'approximation de O(d) par rapport aux meilleurs déplacements de d points. / In this PhD thesis, we consider two computational models that address problems that arise when processing massive data sets. The first model is the Data Streaming Model. When processing massive data sets, random access to the input data is very costly. Therefore, streaming algorithms only have restricted access to the input data: They sequentially scan the input data once or only a few times. In addition, streaming algorithms use a random access memory of sublinear size in the length of the input. Sequential input access and sublinear memory are drastic limitations when designing algorithms. The major goal of this PhD thesis is to explore the limitations and the strengths of the streaming model. The second model is the Communication Model. When data is processed by multiple computational units at different locations, then the message exchange of the participating parties for synchronizing their calculations is often a bottleneck. The amount of communication should hence be as little as possible. A particular setting is the one-way two-party communication setting. Here, two parties collectively compute a function of the input data that is split among the two parties, and the whole message exchange reduces to a single message from one party to the other one. We study the following four problems in the context of streaming algorithms and one-way two-party communication: (1) Matchings in the Streaming Model. We are given a stream of edges of a graph G=(V,E) with n=|V|, and the goal is to design a streaming algorithm that computes a matching using a random access memory of size O(n polylog n). The Greedy matching algorithm fits into this setting and computes a matching of size at least 1/2 times the size of a maximum matching. A long standing open question is whether the Greedy algorithm is optimal if no assumption about the order of the input stream is made. We show that it is possible to improve on the Greedy algorithm if the input stream is in uniform random order. Furthermore, we show that with two passes an approximation ratio strictly larger than 1/2 can be obtained if no assumption on the order of the input stream is made. (2) Semi-matchings in Streaming and in Two-party Communication. A semi-matching in a bipartite graph G=(A,B,E) is a subset of edges that matches all A vertices exactly once to B vertices, not necessarily in an injective way. The goal is to minimize the maximal number of A vertices that are matched to the same B vertex. We show that for any 0<=ε<=1, there is a one-pass streaming algorithm that computes an O(n^((1-ε)/2))-approximation using Ô(n^(1+ε)) space. Furthermore, we provide upper and lower bounds on the two-party communication complexity of this problem, as well as new results on the structure of semi-matchings. (3) Validity of XML Documents in the Streaming Model. An XML document of length n is a sequence of opening and closing tags. A DTD is a set of local validity constraints of an XML document. We study streaming algorithms for checking whether an XML document fulfills the validity constraints of a given DTD. Our main result is an O(log n)-pass streaming algorithm with 3 auxiliary streams and O(log^2 n) space for this problem. Furthermore, we present one-pass and two-pass sublinear space streaming algorithms for checking validity of XML documents that encode binary trees. (4) Budget-Error-Correcting under Earth-Mover-Distance. We study the following one-way two-party communication problem. Alice and Bob have sets of n points on a d-dimensional grid [Δ]^d for an integer Δ. Alice sends a small sketch of her points to Bob and Bob adjusts his point set towards Alice's point set so that the Earth-Mover-Distance of Bob's points and Alice's points decreases. For any k>0, we show that there is an almost tight randomized protocol with communication cost Ô(kd) such that Bob's adjustments lead to an O(d)-approximation compared to the k best possible adjustments that Bob could make.
|
6 |
Méthodes Combinatoires et Algébriques en Complexité de la CommunicationKaplan, Marc 28 September 2009 (has links) (PDF)
La complexité de la communication a été introduite en 1979 par Andrew Chi-Chi Yao. Elle est depuis devenue l'un des modèles de calcul les plus étudiés. L'objectif de celle-ci est d'étudier des problèmes dont les entrées sont distribuées entre plusieurs joueurs, en quantifiant la communication que ceux-ci doivent échanger. Nous utilisons d'abord la complexité de Kolmogorov, une caractérisation algorithmique de l'aléatoire, pour prouver des bornes inférieures sur la complexité de la communication. Notre méthode constitue une généralisation de la méthode d'incompressibilité. L'avantage de cette approche est de mettre en valeur la nature combinatoire des preuves. Nous étudions ensuite la simulation des distributions de probabilité causales avec de la communication. Ce modèle généralise la complexité de la communication traditionnelle et comprend en particulier les distributions quantiques. Nous montrons pour ce problème des bornes inférieures et supérieures. Dans le cas des fonctions booléennes, la borne inférieure que nous proposons est équivalente aux normes de factorisation, une puissante méthode introduite par Linial et Shraibman en 2006. Enfin, nous étudions la complexité en boîte non-locale. Cette ressource a été introduite par Popescu et Rohrlich pour étudier la non-localité. Le problème est de quantifier le nombre de boîtes nécessaire et suffisant pour calculer une fonction ou simuler une distributions. Nous donnons encore des bornes inférieures et supérieures pour ces problèmes, ainsi que des applications à l'évaluation sécurisée, un problème cryptographique très important.
|
7 |
Interactive quantum information theoryTouchette, Dave 04 1900 (has links)
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel.
Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment.
Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique.
Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ».
Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique.
Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive. / Quantum information theory has developed tremendously over the past two decades, with analogues and extensions of the source coding and channel coding theorems for unidirectional communication. Meanwhile, for interactive communication, a quantum analogue of communication complexity has been developed, for which quantum protocols can provide exponential savings over the best possible classical protocols for some classical tasks. However, quantum information is much more sensitive to noise than classical information. It is therefore essential to make the best use possible of quantum resources.
In this thesis, we take an information-theoretic point of view on interactive quantum
protocols and study the interactive analogues of source compression and
noisy channel coding.
The setting we consider is that of quantum communication complexity:
Alice and Bob want to perform some joint quantum computation while
minimizing the required amount of communication.
Local computation is deemed free.
Our results are split
into three distinct chapters, and these are organized in such a way that each can
be read independently.
Given its central role in the context of interactive compression, we devote a chapter
to the task of quantum state redistribution. In particular, we prove lower
bounds on its communication cost that are robust in the context of interactive communication.
We also prove one-shot, one-message achievability bounds.
In a subsequent chapter, we define a new, fully quantum notion of information
cost for interactive protocols and a corresponding notion of information complexity for bipartite tasks.
It characterizes how much quantum information, rather than quantum
communication, Alice and Bob must exchange in order to implement a given bipartite task.
We prove many structural properties for these quantities, and provide an operational interpretation
for quantum information complexity as the amortized quantum communication complexity.
In the special case of classical inputs, we provide an alternate characterization of information
cost that provides an answer to the following question about quantum protocols:
what is the cost of forgetting classical information?
Two applications are presented: the first general multi-round direct-sum theorem for quantum protocols,
and a tight lower bound, up to polylogarithmic terms, for the bounded-round quantum communication complexity
of the disjointness function.
In a final chapter, we initiate the study of the interactive quantum capacity of noisy channels. Since techniques to distribute
entanglement are well-studied, we focus on a model with perfect pre-shared entanglement and noisy classical communication.
We show that even in the harder setting of adversarial errors, we can tolerate a provably maximal error rate of one half minus epsilon, for an arbitrarily small epsilon greater than zero, at positive communication rates. It then follows that random noise channels with positive capacity for unidirectional transmission also have positive interactive quantum capacity.
We conclude with a discussion of our results and further research directions in interactive quantum information theory.
|
8 |
Programmes de branchement catalytiques : algorithmes et applicationsCôté, Hugo 08 1900 (has links)
No description available.
|
Page generated in 0.153 seconds