Spelling suggestions: "subject:"compliant"" "subject:"ompliant""
111 |
Instrumented Compliant Wrist System for Enhanced Robotic InteractionLaferrière, Pascal January 2016 (has links)
This thesis presents the development of an instrumented compliant wrist mechanism which serves as an interface between robotic platforms and their environments in order to detect surface positions and orientations. Although inspired by similar existing devices, additional features such as noncontact distance estimations, a simplified physical structure, and wireless operation were incorporated into the design. The primary role envisioned for this mechanism was for enabling robotic manipulators to perform surface following tasks prior to contact as this was one requirement of a larger project involving inspection of surfaces. The information produced by the compliant wrist system can be used to guide robotic devices in their workspace by providing real-time proximity detection and collision detection of objects.
Compliance in robotic devices has attracted the attention of many researchers due to the multitude of benefits it offers. In the scope of this work, the main advantage of compliance is that it allows rigid structures to come into contact with possibly fragile objects. Combined with instrumentation for detecting the deflections produced by this compliance, closed-loop control can be achieved, increasing the number of viable applications for an initially open-loop system.
Custom fabrication of a prototype device was completed to physically test operation of the designed system. The prototype incorporates a microcontroller to govern the internal operations of the device such as sensor data collection and processing. By performing many computation tasks directly on the device, robotic controllers are able to dedicate more of their time to more important tasks such as path planning and object avoidance by using the pre-conditioned compliant device data.
Extensive work has also gone into the refinement of sensor signals coming from the key infrared distance measurement sensors used in the device. A calibration procedure was developed to decrease inter-sensor variability due to the method of manufacturing of these sensors. Noise reduction in the signals is achieved via a digital filtering process.
The evaluation of the performance of the device is achieved through the collection of a large amount of sensor data for use in characterisation of the sensor and overall system behavior. This comes in the form of a statistical analysis of the sensor outputs to determine signal stability and accuracy. Additionally, the operation of the device is validated by its integration onto a manipulator robot and incorporating the data generated into the robot’s control loop.
|
112 |
Mechanical Design and Analysis: High-Precision Microcontact Printhead for Roll-to-Roll Printing of Flexible ElectronicsRiza, Mehdi 02 April 2021 (has links)
Flexible electronics have demonstrated potential in a wide range of applications including wearable sensors, photovoltaics, medical devices and more, due to their properties of extreme adaptability while also being lightweight and highly robust. The main challenge standing in the way of progress in this field is the difficulty of large-scale manufacturing of these flexible electronics compared to their rigid counterparts. Microcontact printing is a form of soft lithography in which an elastomeric stamp is used to transfer sub-micron scale surface patterns onto a flexible substrate via ink monolayers. The integration of microcontact printing into a roll-to-roll (R2R) system will enable continuous printing of flexible electronics and scale it up for massive manufacturing. The proposed thesis outlines a novel mechanical design for a microcontact printer which utilizes flexural motion stages with integrated position and force sensors to control the print process on a R2R system. The printhead is designed to fit the available space on the pre-installed UMass Amherst Intelligent Sensing Laboratory test table and breadboard. The R2R system includes motorized rollers for winding/unwinding the PET (polyethylene terephthalate) web substrate, and idler rollers for guiding a web through the print system. As the central element to this design, two matching plate flexures are designed on the two ends of the printer roller to control the tilting and positioning of the print roller. Flexure mechanisms rely on bending and torsion of flexible elements: this allows them to achieve much higher precision in positioning compared to conventional mechanisms which rely on surface interaction between multiple moving parts. The print resolution target for this design is 500 nm (linewidth), based on current state-of-the-art designs [1, 2]. In the initial version of the printhead design, a total of 33 parts are custom fabricated for assembly and installation in the R2R system lab setup. These include everything from the components of the print roller, specially adapted air-bearing mounts, support structures, and connectors. The design and 4 fabrication process for every component is outlined here along with the functionality, as every component was designed with the system objectives and constraints in mind. Using SolidWorks simulation, FEA (finite element analysis) is performed for every part of the assembly that is subjected to stress in the real system, so that predictions can be made about the displacement of the motion stages and the frequency of vibration. These predictions are evaluated by comparation with the experimental results from tests conducted on the real system hardware and used to assess the quality of the fabricated assembly. The work performed in this thesis enables advancements in the assembly of an updated, optimized R2R system and has led to an experimentally functioning lab setup that is ripe for further improvements. Completion and calibration of this augmented R2R system will, in future, enable UMass Amherst in-house production of large-area flexible electronics which may be used in a wide range of applications, including medical sensors, solar cells, displays, and more. In addition to microcontact printing, this R2R system may also be applied to nanoimprint lithography, another contact-based print method, or integrated with inkjet printing, a non-contact method.
|
113 |
Vliv viskoelasticity a provozních podmínek na tření poddajných kontaktů / The effect of viscoelasticity and operating conditions on friction of compliant contactsQuinn, Cheney January 2021 (has links)
Poddajné kontakty obsahující polymerní nebo pryžové členy lze nalézt v technických i biologických aplikacích. I přes vývoj v této oblasti existují efekty, které ovlivňují tribologické aspekty těchto kontaktů, a je třeba je dále zkoumat. Tato práce se zabývá vlivy kinematických podmínek, konfigurace, viskoelasticity a viskozity maziva na tření v mazaných poddajných kontaktech. Výsledky byly použity k vývoji numerického modelu pro predikci kapalinového tření v poddajných kontaktech. K objasnění chování poddajných kontaktů bylo použito zařízení Mini Traction Machine (MTM) v konfiguraci ball-on-disc, což umožnilo zkoumání zmíněných vlivů. Z poznatků z technické oblasti bylo zjištěno, že viskoelasticita se projevuje ve všech konfiguracích, tedy soft-on-hard, hard-on-soft a soft-on-soft, a její efekt je nejvýznamnější v konfiguracích s poddajným diskem. Data dále ukazují, že poměr skluzu a valení má vliv na valivé tření což je v rozporu se současnou literaturou. Výsledky z biologické oblasti naznačují, že za určitých podmínek lze nahradit nativní kapalinu jednoduchým mazivem. Tyto poznatky mohou posloužit jako odrazový můstek pro další studie zabývající se poddajnými kontakty.
|
114 |
Use of compliant mechanisms in gearbox applicationsManresa Pérez, Álvaro, Gonzalez Sanchez, Ander January 2020 (has links)
The purpose of this thesis is to prove that the use of compliant mechanisms in gearbox applications is viable. Compliant mechanisms are developed for their implementation in Scania’s hybrid asynchronous gearboxes. These mechanisms are presented as a replacement for the latch assembly currently in use to hold the position of the gear-shifting elements. The objective is to implement a compliant mechanism in order to avoid wear and increase the life cycle within the given constraints, as well as to have a better understanding of this kind of mechanisms. The presented literature study shows that bistable and tristable compliant mechanisms are the most suitable ones for this application. Titanium alloys, tool steels, and bulk metallic glasses are discussed as the best material options for compliant mechanism manufacturing. A mechanism idea generation and selection process is conducted. Finite Element Analysis (FEA) is developed with the chosen bistable and tristable compliant mechanism ideas. The tristable concept results on being inappropriate for this application, as it does not fulfil the volume and positioning constraints. The bistable device is proven to be suitable, and further analysis is carried out to study its fatigue resistance and show that it fulfils all the requirements, solving the weaknesses of the latch and absorbing the impact in the shaft. Additive manufacturing methods and injection moulding are found to be incompatible with the designed mechanisms. That is why the chosen bistable mechanism is designed to be made out of different parts. Future work is presented to strengthen the weaker points of this project.
|
115 |
Cloud-based Online Solution for Automated Definition of Driving Routes for Verification of Automotive SystemsFathima, Nida 16 September 2019 (has links)
The automobile industry is constantly evolving and adapting to consumer demands. Automakers are constantly shaping their manufacturing and business processes to more accurately fit the market as well as reduce costs and maximize profits. Along with it, the customer expectations of vehicle quality, reliability, safety, and utility are also at an all-time high. After development, testing the developed system with various evaluation methods is important for the validation and verification of automotive systems. One of the most important evaluation methods for testing automotive systems from the automotive divisions like the power-train systems and ADAS is conducting test drives.
Currently, the automotive divisions at Bosch have fixed routes that were planned manually. There is no routing solution, with updated map information and visualization of the route based on some automotive parameters, that can help them with planning the test drives for verifying their automotive systems. This thesis is based on providing a routing solution to engineers which will help them in planning routes based on the required determinants.
This thesis report gives an analysis of the whole hypothesis of routing in the initial two chapters. Some fundamentally distinct routing methods and algorithms were examined. Research on some existing open source routing engines and complicated routing scenarios was also done. The outcome of this thesis is a 'TestRide planner' which provides basic routing solution with some extra route visualization functionality. Algorithms for two complex routing functions of distance-constrained routing and RDE-constraint routing were also composed.
|
116 |
Nonlinear Isoviscous Behaviour of Compliant Journal BearingsCha, Matthew January 2012 (has links)
Plans to shut down nuclear power plants in some European countries as well as increased electricity production by wind and solar power will increase the work load on hydroelectric power plants in the future. Also, due to the power grid regulations, hydroelectric power plants undergo more frequent start-ups and shut-downs. During such transient periods, a large amplitude shaft motion can occur, especially in the power plants with vertical shafts. Large shaft motion is not desirable because it can lead to a machine failure. Furthermore, performance limitations of conventional white metal or babbitted bearings call for the development of new bearing designs. An outstanding tribological performance can be achieved by introducing compliant polymer liners. At the same time, bearings with compliant liners may alter rotor-bearing system dynamic behaviour compared to the systems with conventional white metal bearings. The research approach of this thesis is to employ nonlinear analysis to provide further understanding of the compliant bearing dynamic response to synchronous shaft excitation. Plain cylindrical journal bearings with different compliant liner thicknesses were analysed using a nonlinear approach. The numerical model was verified with an in-house developed code at steady state conditions. Results obtained by the numerical models showed good agreement. After verification of the numerical model for fixed geometry journal bearings, models for tilting pad journal bearings were developed. Results for the tilting pad journal bearing with three pads with line pivot geometry were compared with published data in dynamic conditions. A good agreement was obtained between the two numerical models. The effect of pad pivot geometry on bearing dynamic response was investigated. Vertical and horizontal shaft configurations were compared in terms of the effect of preload factor, pivot offset, tapers and pad inclination angles. Influence of the viscoelastic properties of compliant liners was also studied. All these factors significantly affect bearing dynamic response. It is shown how these factors should be selected to control the journal orbit sizes. It was also shown that the compliant liner provides lower maximum oil film pressure and thicker minimum oil film thickness in the bearing mid-plane in both static and dynamic operating conditions. / <p>QC 20120319</p> / Swedish Hydropower Centre
|
117 |
Joint Analysis of and Applications for Devices with Expanding MotionsSeymour, Kendall Hal 01 July 2019 (has links)
Origami has been extensively studied by engineers for its unique motions and ability to collapse to small volumes. Techniques have been studied for replicating origami-like folding motion in thick materials, but limited practical applications of these techniques have been demonstrated. Developable mechanisms are a new mechanism type that has a similar ability to collapse to a low profile. The cylindrical developable mechanism has the ability to emerge from and conform to a cylindrical surface. In this work, a few practical applications of devices with novel expanding motions are presented. The design and testing of an origami-inspired deployable ballistic barrier, which was designed by combining and modifying existing thickness accommodation techniques, is discussed. The properties of cylindrical developable mechanisms are examined and two devices designed for use with minimally invasive surgical tooling are presented. Various hinge options for small-scale cylindrical developable mechanisms are then reviewed and discussed. A planar modeling assumption for curved lamina emergent torsional joints in thin-walled cylinders is then analytically and empirically validated. Conclusions are drawn and recommendations for future work are given.
|
118 |
On Creases and Curved Links: Design Approaches for Predicting and Customizing Behaviors in Origami-Based and Developable MechanismsButler, Jared J. 03 August 2020 (has links)
This work develops models and tools to help designers address the challenges associated with designing origami-based and developable mechanisms. These models utilize strain energy, kinematics, compliant mechanisms, and graphical techniques to make the design of origami-based and developable mechanisms approachable and intuitive. Origami-based design tools are expanded through two methods. First presented is a generalized approach for identifying single-output mechanical advantage for a multiple-input compliant mechanism, such as many origami-based mechanisms. The model is used to predict the force-deflection behavior of an origami-based mechanism (Oriceps) and is verified with experimental data from magnetic actuation of the mechanism. Second is a folding technique for thick-origami, called the regional-sandwiching of compliant sheets (ReCS), which creates flat-foldable, rigid-foldable, and self-deploying thick origami-based mechanisms. The technique is used to create mountain/valley assignments for each fold about a vertex, constraining motion to a single branch of folding. Strain energy in deflected flexible members is used to enable self-deployment. Three physical models, a simple single-fold mechanism, a degree-four vertex mechanism, and a full tessellation, are presented to demonstrate the ReCS technique. Developable mechanism design is further enabled through an exploration of their feasible design space. Terminology is introduced to define the motion of developable mechanisms while interior and exterior to a developable surface. The limits of this motion are identified using defined conditions. It is shown that the more difficult of these conditions may be treated as a non-factor during the design of cylindrical developable mechanisms given certain assumptions. These limits are then applied to create a resource for designing bistable developable mechanisms (BDMs) that reach their second stable positions while exterior or interior to a cylindrical surface. A novel graphical method for identifying stable positions of linkages using a single dominant torsional spring, called the Principle of Reflection, is introduced and implemented. The results are compared with a numerical simulation of 30,000+ mechanisms to identify possible incongruencies. Two tables summarize the results as the guide for designing extramobile and intramobile BDMs. In fulfilling the research objectives, this dissertation contributes to the scientific community of origami-based and developable mechanism design approaches. As a result of this work, practitioners will be better able to approach and design complex origami-based and developable mechanisms.
|
119 |
Design of a helmet with an advanced layered composite for energy dissipation using a multi-material compliant mechanism synthesisGokhale, Vaibhav V. January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traumatic Brain Injuries (TBI) are one of the most apprehensive issues today. In recent years a lot of research has been done for reducing the risk of TBI, but no concrete solution exists yet. Helmets are one of the protective devices that are used to prevent human beings from mild TBI. For many years some kind of foam has been used in helmets for energy absorption. But, in recent years non-traditional solutions other than foam are being explored by different groups. Focus of this thesis is to develop a completely new concept of energy absorption for helmet liner by diverting the impact forces in radial directions normal to the direction of impact.
This work presents a new design of an advanced layered composite (ALC) for energy dissipation through action of a 3D array of compliant mechanisms. The ALC works by diverting incoming forces in multiple radial directions and also has design provisions for reducing rotational forces. Design of compliant mechanism is optimized using multi-material topology optimization algorithm considering rigid and flexible material phases together with void. The design proposed here needs to be manufactured using the advanced polyjet printing additive manufacturing process. A general and parametric design procedure is explained which can be used to produce variants of the designs for different impact conditions and different applications.
Performance of the designed ALC is examined through a benchmark example in which a comparison is made between the ALC and the traditional liner foam. An impact test is carried out in this benchmark example using dynamic Finite Element Analysis in LS DYNA. The comparison parameters under consideration are gradualness of energy absorption and peak linear force transmitted from the ALC to the body in contact with it. The design in this article is done particularly for the use in sports helmets. However, the ALC may find applications in other energy absorbing structures such as vehicle crashworthy components and protective gears. The ultimate goal of this research is to provide a novel design of energy absorbing structure which reduces the risk of head injury when the helmet is worn.
|
120 |
Design of compliant mechanism lattice structures for impact energy absorptionNajmon, Joel Christian 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lattice structures have seen increasing use in several industries including automotive, aerospace, and construction. Lattice structures are lightweight and can achieve a wide range of mechanical behaviors through their inherent cellular design. Moreover, the unit cells of lattice structures can easily be meshed and conformed to a wide variety of volumes. Compliant mechanism make suitable micro-structures for units cells in lattice structures that are designed for impact energy absorption. The flexibility of compliant mechanisms allows for energy dissipation via straining of the members and also mitigates the effects of impact direction uncertainties.
Density-based topology optimization methods can be used to synthesize compliant mechanisms. To aid with this task, a proposed optimization tool, coded in MATLAB, is created. The program is built on a modular structure and allows for the easy addition of new algorithms and objective functions beyond what is developed in this study. An adjacent investigation is also performed to determine the dependencies and trends of mechanical and geometric advantages of compliant mechanisms. The implications of such are discussed.
The result of this study is a compliant mechanism lattice structure for impact energy absorption. The performance of this structure is analyzed through the application of it in a football helmet. Two types of unit cell compliant mechanisms are synthesized and assembled into three liner configurations. Helmet liners are further developed through a series of ballistic impact analysis simulations to determine the best lattice structure configuration and mechanism rubber hardness. The final liner is compared with a traditional expanded polypropylene foam liner to appraise the protection capabilities of the proposed lattice structure.
|
Page generated in 0.0437 seconds