• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 20
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 20
  • 19
  • 18
  • 17
  • 15
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Microtomographie X de matériaux à comportement pseudo-fragile : Identification du réseau de fissures / X-ray microtomography of materials to brittle-like behavior : Identification of the crack network

Hauss, Grégory 06 December 2012 (has links)
L'étude de l'endommagement des matériaux à comportement pseudo-fragile fait l'objet denombreuses études et la caractérisation du réseau de fissures constitue une étape nécessairepour une meilleure compréhension de leur comportement. L'objectif principal est ici d'identifierde manière la plus fine possible cet espace fissuré en trois dimensions grâce à la techniqued'imagerie nommée microtomographie X. Pour ce faire, une machine d'essai in-situ a étédéveloppée et une procédure d'analyse des images 3D a été validée. L'objectif du dispositif insituest de maintenir l'échantillon dans différents états fissurés pour rendre possible lesacquisitions microtomographiques. Une fois les images 3D reconstruites, la procédure detraitement est appliquée et l'espace fissuré est identifié. Des mesures sont alors réalisées surl'évolution du réseau de fissures au cours de l'endommagement. Ce travail constitue la premièreétape d'un traitement plus général qui a pour objectif de simuler numériquement lecomportement mécanique de ces matériaux en se basant sur leur géométrie réelle. / Materials displaying a pseudo-brittle behavior have been well studied over the past decade andthe characterization of the cracks network has become nowadays an important step for theunderstanding of their damaging behavior. The aim of this work is to characterize, in the finestavailable way, this crack space in 3D using X-ray computed microtomography. This wasachieved: 1) by designing an in-situ compressive device which maintains a sample in a crackedstate during microtomographic data acquisition and, 2) by processing the images with relevantimage filtering techniques for a better cracks network characterization. Two parameters ofchoice are then measured: the cracks network surface and volume. This work is the first step ofa global procedure which aims to numerically model the mechanical behavior of pseudo-brittlematerials by using real 3D crack geometry.
42

Static and time-dependent mechanical behaviour of preserved archaeological wood : Case studies of the seventeenth century warship Vasa

Vorobyev, Alexey January 2017 (has links)
Wooden objects have been widely used in the history of humanity and play an important role in our cultural heritage. The preservation of such objects is of great importance and can be a challenging task. This thesis investigates the static and time-dependent mechanical behaviour of archaeological oak wood from the Vasa warship. Characterisation of mechanical properties is necessary for the formulation of a numerical model to design an improved support structure. The ship was impregnated with polyethylene glycol (PEG) for dimensional stabilisation. All elastic engineering constants of the Vasa oak have been identified and compared with those of recent oak by means of the static and dynamic testing. The experiments were done on samples with cubic geometry, which allowed obtaining all elastic constants from a single sample. The usage of cubic samples with orthotropic mechanical properties during compressive experiments was validated with finite-element simulations. The Young's moduli of the Vasa oak in all orthotropic directions were smaller than those for the recent oak. The shear moduli of Vasa oak was determined and verified with the resonant ultrasound spectroscopy. The time-dependent mechanical behaviour of the Vasa oak has been studied. Creep studies were performed in uniaxial compression on the cubic samples in all orthotropic directions. The samples loaded in the longitudinal direction were subjected to different stress levels. A stress level below 15% of the yield stress in the longitudinal direction did not result in non-linear creep with increasing creep rates within the time frame of the tests. The results of the studies in radial and tangential directions showed that creep was dominated by the effect of annual fluctuations in relative humidity and temperature. The weight changes based on annual fluctuations of relative humidity were measured for Vasa oak and recent oak. The Vasa oak showed higher variations due to an increased hygroscopicity which is the result of the impregnation with PEG. In conceiving a full-scale finite-element model of Vasa ship, not only the stress-strain relations of the material but also those of the structural joints are needed. Since the in-situ measurement of joints is not an option, a replica of a section of the ship hull was built and tested mechanically. The load-induced displacements were measured using 3D laser scanning which proved to have advantages to conventional point displacement measurements. The mechanical characteristics of the Vasa oak and joint information presented in this work can be used as input for a finite-element model of the Vasa ship for simulation of static and time-dependent behaviour on a larger scale. / Stötta Vasa
43

Estudos de solos tropicais para uso em pavimentação a partir de ensaios triaxiais estáticos / Study of tropical soils for use in pavement through static compression test

Dias, Idalíria de Moraes 08 August 2007 (has links)
O presente trabalho discute comparativamente o comportamento mecânico de solos lateríticos e não lateríticos para uso em pavimentação. Para tanto foram ensaiados 3 pares de solos, sendo cada par constituído por solos de curvas granulométricas semelhantes, mesma classificação HRB e comportamentos distintos quanto à laterização. Foram realizados ensaios triaxiais convencionais do tipo CD saturado e não saturado sem controle de sucção e ensaios de compressão simples. A partir dos resultados dos ensaios foram modeladas as deformações elásticas em função das tensões de confinamento e determinadas as envoltórias de ruptura de Mohr-Coulomb. Concluiu-se que a maior resistência dos solos lateríticos está representada na componente coesão da envoltória de Mohr-Coulomb e que esta é mobilizada praticamente ao máximo desde o início em um ensaio triaxial. A diferença de resistência entre os ensaios saturados e não saturados também se mostrou na coesão, com a soma nesta da componente coesão aparente, fruto da sucção. O ângulo de atrito mostrou-se constante para as duas gêneses, tanto para a condição saturada como para a condição não saturada. Os solos lateríticos apresentam rigidez maior que os não lateríticos, tanto na condição saturada como na condição não saturada. Para os níveis de tensão de confinamento utilizados, a rigidez dos solos, de ambas as gêneses, na condição saturada, diminui com o aumento da tensão confinante. Também se observou que a ação da sucção existente nos ensaios não saturados proporciona, para ambas as gêneses, uma mudança da sensibilidade da rigidez ao aumento da tensão confinante. / The present paper discusses the mechanical behavior of lateritic and no-lateritic soils for use in pavement. To attain that goal, 3 pair soils were rehearsed, being each pair constituted by soils of similar granulometric curves, same HRB classification and different genesis. The experimental program was constituted of static triaxial compression test of the type saturated CD and of the type unsaturated without suction control and unconfined compression strength test. With the results of the tests, the elastic strains were modeled in function of the confinement stresses and the rupture paths of Mohr-Coulomb were determined. The analysis that the shear strength of the lateritic soils is greater than no-lateritic soil because of the cohesion. Since the begin it, the cohesion is mobilized practically to the maximum for both soils. The difference of shear strength between the saturated and unsaturated tests it is also cohesion, with the sum in that component of the cohesion apparent produced for suction. The angle of internal friction is constant for the two genesis as much for the saturated test as for the unsaturated test. The lateritic soils present greater stiffness than the no-lateritic soils, as much for saturated test as for unsaturated test. For the levels of confinement stresses used, in the saturated condition the stiffness of the soils decreases with the increase of the confinement stresses of both genesis. In addition, it was observed that the suction existent in the unsaturated testing produce a change of the sensibility of the soils stiffness to the increase of the confinement stress for both genesis.
44

Etude de la co-forgeabilité d'u multi-matériau : application à un coupe d'acier / Study of the co-forgeability of a multi-material : application to a couple of steels

Enaim, Mohammed 17 January 2019 (has links)
Le forgeage multi-matériaux est un procédé permettant la mise en forme et l’assemblage simultanés de matériaux différents. Ce procédé permet d’obtenir des pièces multi-matériaux avec le « bon matériau placé au bon endroit ». L’objectif des travaux de thèse est de définir les conditions nécessaires à l’établissement de la liaison métallurgique par forgeage à l’interface d’un couple d’aciers. Dans un premier temps, l’état de l’art a servi à l’identification les phénomènes physiques accompagnant le forgeage multi-matériaux et les paramètres clés pilotant l’établissement de la liaison métallurgique. Le principe de base de l’établissement d’une liaison passe par la fragmentation des oxydes en surface des matériaux et par l’application d’une pression de contact favorisant le contact entre les matériaux nus et la diffusion. Les deux paramètres clés identifiés sont donc la pression normale de contact et l’expansion de surface. Le protocole de caractérisation du co-forgeage mis en place comporte trois essais « simples » permettant de solliciter les interfaces avec des pressions et des expansions différentes. Ces dernières, estimées par simulation numérique de l’essai, sont mises en relation avec la qualité des liaisons obtenues évaluée, quant à elle, au travers d’observations métallographiques. Les premières simulations permettent de dimensionner les campagnes expérimentales. Celles-ci sont ensuite conduites sur les moyens de mise en forme de la plateforme VULCAIN. Les efforts de mise en forme et la géométrie globale des pièces et la répartition de matière servent de base à l’identification des paramètres de la simulation. La simulation ainsi obtenue et les observations métallographiques aux interfaces sont ensuite mises en lien. Cette démarche a permis de confirmer l’importance du rôle joué par la pression de contact et l’expansion de surface sur l’établissement d’une liaison au cours de la mise en forme du multi-matériaux. La répartition et la forme des particules d’oxydes semblent liées au chemin thermomécanique subi par l’interface. / The multi-material forging is a forming process allowing, simultaneously, the welding and shaping of multi-material parts with the right material at the right place. The purpose of the presented work is to identify the necessary conditions to obtain a metallurgical bond during forming between two different grades of steel. First, the state of the art allowed the identification of the physical phenomena occurring during multi-material forging and the determination of the key parameters of the bonding which are the contact pressure and the surface expansion at the both sides of the interface. The mechanisms to establish metallurgical bond by forging are based on the breaking and the dispersion of the oxide layer at the interface then the extrusion of the soft material through the voids generated between the oxide fragments. Second, the characterization methodology of this work is presented. It consists of three “simple” forming tests leading to different interface conditions (contact pressure and surface expansion). The first simulations allow the design of the experimental plan for each test. The comparison between simulations and experiments allows the identification of physical parameters of the simulation. Then, the contact pressure and the surface expansion of the identified simulations are used to analyze the metallographic structure and the bonding at the interface.The developed work confirms the major effect of the contact pressure and the surface expansion on the establishment of a metallurgical bond during multi-material forming. The size and the shape of the oxide particles seem to depend on the thermomechanical path at the interface.
45

Artificial Neural Network Approach For Characterization Of Acoustic Emission Sources From Complex Noisy Data

Bhat, Chandrashekhar 06 1900 (has links)
Safety and reliability are prime concerns in aircraft performance due to the involved costs and risk to lives. Despite the best efforts in design methodology, quality evaluation in production and structural integrity assessment in-service, attainment of one hundred percent safety through development and use of a suitable in-flight health monitoring system is still a farfetched goal. And, evolution of such a system requires, first, identification of an appropriate Technique and next its adoption to meet the challenges posed by newer materials (advanced composites), complex structures and the flight environment. In fact, a quick survey of the available Non-Destructive Evaluation (NDE) techniques suggests Acoustic Emission (AE) as the only available method. High merit in itself could be a weakness - Noise is the worst enemy of AE. So, while difficulties are posed due to the insufficient understanding of the basic behavior of composites, growth and interaction of defects and damage under a specified load condition, high in-flight noise further complicates the issue making the developmental task apparently formidable and challenging. Development of an in-flight monitoring system based on AE to function as an early warning system needs addressing three aspects, viz., the first, discrimination of AE signals from noise data, the second, extraction of required information from AE signals for identification of sources (source characterization) and quantification of its growth, and the third, automation of the entire process. And, a quick assessment of the aspects involved suggests that Artificial Neural Networks (ANN) are ideally suited for solving such a complex problem. A review of the available open literature while indicates a number of investigations carried out using noise elimination and source characterization methods such as frequency filtering and statistical pattern recognition but shows only sporadic attempts using ANN. This may probably be due to the complex nature of the problem involving investigation of a large number of influencing parameters, amount of effort and time to be invested, and facilities required and multi-disciplinary nature of the problem. Hence as stated in the foregoing, the need for such a study cannot be over emphasized. Thus, this thesis is an attempt addressing the issue of analysis and automation of complex sets of AE data such as AE signals mixed with in-flight noise thus forming the first step towards in-flight monitoring using AE. An ANN can in fact replace the traditional algorithmic approaches used in the past. ANN in general are model free estimators and derive their computational efficiency due to large connectivity, massive parallelism, non-linear analog response and learning capabilities. They are better suited than the conventional methods (statistical pattern recognition methods) due to their characteristics such as classification, pattern matching, learning, generalization, fault tolerance and distributed memory and their ability to process unstructured data sets which may be carrying incomplete information at times and hence chosen as the tool. Further, in the current context, the set of investigations undertaken were in the absence of sufficient a priori information and hence clustering of signals generated by AE sources through self-organizing maps is more appropriate. Thus, in the investigations carried out under the scope of this thesis, at first a hybrid network named "NAEDA" (Neural network for Acoustic Emission Data Analysis) using Kohonen self-organizing feature map (KSOM) and multi-layer perceptron (MLP) that learns on back propagation learning rule was specifically developed with innovative data processing techniques built into the network. However, for accurate pattern recognition, multi-layer back propagation NN needed to be trained with source and noise clusters as input data. Thus, in addition to optimizing the network architecture and training parameters, preprocessing of input data to the network and multi-class clustering and classification proved to be the corner stones in obtaining excellent identification accuracy. Next, in-flight noise environment of an aircraft was generated off line through carefully designed simulation experiments carried out in the laboratory (Ex: EMI, friction, fretting and other mechanical and hydraulic phenomena) based on the in-flight noise survey carried out by earlier investigators. From these experiments data was acquired and classified into their respective classes through MLP. Further, these noises were mixed together and clustered through KSOM and then classified into their respective clusters through MLP resulting in an accuracy of 95%- 100% Subsequently, to evaluate the utility of NAEDA for source classification and characterization, carbon fiber reinforced plastic (CFRP) specimens were subjected to spectrum loading simulating typical in-flight load and AE signals were acquired continuously up to a maximum of three designed lives and in some cases up to failure. Further, AE signals with similar characteristics were grouped into individual clusters through self-organizing map and labeled as belonging to appropriate failure modes, there by generating the class configuration. Then MLP was trained with this class information, which resulted in automatic identification and classification of failure modes with an accuracy of 95% - 100%. In addition, extraneous noise generated during the experiments was acquired and classified so as to evaluate the presence or absence of such data in the AE data acquired from the CFRP specimens. In the next stage, noise and signals were mixed together at random and were reclassified into their respective classes through supervised training of multi-layer back propagation NN. Initially only noise was discriminated from the AE signals from CFRP failure modes and subsequently both noise discrimination and failure mode identification and classification was carried out resulting in an accuracy of 95% - 100% in most of the cases. Further, extraneous signals mentioned above were classified which indicated the presence of such signals in the AE signals obtained from the CFRP specimen. Thus, having established the basis for noise identification and AE source classification and characterization, two specific examples were considered to evaluate the utility and efficiency of NAEDA. In the first, with the postulation that different basic failure modes in composites have unique AE signatures, the difference in damage generation and progression can be clearly characterized under different loading conditions. To examine this, static compression tests were conducted on a different set of CFRP specimens till failure with continuous AE monitoring and the resulting AE signals were classified through already trained NAEDA. The results obtained shows that the total number of signals obtained were very less when compared to fatigue tests and the specimens failed with hardly any damage growth. Further, NAEDA was able to discriminate the"noise and failure modes in CFRP specimen with the same degree of accuracy with which it has classified such signals obtained from fatigue tests. In the second example, with the same postulate of unique AE signatures for different failure modes, the differences in the complexion of the damage growth and progression should become clearly evident when one considers specimens with different lay up sequences. To examine this, the data was reclassified on the basis of differences in lay up sequences from specimens subjected to fatigue. The results obtained clearly confirmed the postulation. As can be seen from the summary of the work presented in the foregoing paragraphs, the investigations undertaken within the scope of this thesis involve elaborate experimentation, development of tools, acquisition of extensive data and analysis. Never the less, the results obtained were commensurate with the efforts and have been fruitful. Of the useful results that have been obtained, to state in specific, the first is, discrimination of simulated noise sources achieved with significant success but for some overlapping which is not of major concern as far as noises are concerned. Therefore they are grouped into required number of clusters so as to achieve better classification through supervised NN. This proved to be an innovative measure in supervised classification through back propagation NN. The second is the damage characterization in CFRP specimens, which involved imaginative data processing techniques that proved their worth in terms of optimization of various training parameters and resulted in accurate identification through clustering. Labeling of clusters is made possible by marking each signal starting from clustering to final classification through supervised neural network and is achieved through phenomenological correlation combined with ultrasonic imaging. Most rewarding of all is the identification of failure modes (AE signals) mixed in noise into their respective classes. This is a direct consequence of innovative data processing, multi-class clustering and flexibility of grouping various noise signals into suitable number of clusters. Thus, the results obtained and presented in this thesis on NN approach to AE signal analysis clearly establishes the fact that methods and procedures developed can automate detection and identification of failure modes in CFRP composites under hostile environment, which could lead to the development of an in-flight monitoring system.
46

VARIABLE-COMPLIANCE-TYPE CONSTITUTIVE MODEL FOR METHANE HYDRATE BEARING SEDIMENT

Miyazaki, Kuniyuki, Masui, Akira, Haneda, Hironori, Ogata, Yuji, Aoki, Kazuo, Yamaguchi, Tsutomu 07 1900 (has links)
In order to evaluate a methane gas productivity of methane hydrate reservoirs, it is necessary to develop a numeric simulator predicting gas production behavior. For precise assessment of long-term gas productivity, it is important to develop a mathematical model which describes mechanical behaviors of methane hydrate reservoirs in consideration of their time-dependent properties and to introduce it into the numeric simulator. In this study, based on previous experimental results of triaxial compression tests of Toyoura sand containing synthetic methane hydrate, stress-strain relationships were formulated by variable-compliance-type constitutive model. The suggested model takes into account the time-dependent property obtained from laboratory investigation that time dependency of methane hydrate bearing sediment is influenced by methane hydrate saturation and effective confining pressure. Validity of the suggested model should be verified by other laboratory experiments on time-dependent behaviors of methane hydrate bearing sediment.
47

Microstructural Evolution In As-cast Alloys during Plastic Deformation

Basirat, Mitra January 2013 (has links)
The effect of deformation on microstructural changes in metals and alloys is the subject of considerable practical interest. The ultimate goal is to control, improve and optimize the microstructure and texture of the finished products produced by metal forming operations. The development in the subject field is remarkable but a more in-depth study could lead us to the better understanding of the phenomena.   In the present work microstructural evolution during the plastic deformation of as-cast pure metals and alloys is studied. An experimental method was developed to study the material behavior under the hot compression testing. This method was applied on the as-cast structure of copper, bearing steel, Incoloy 825 and β brass at different temperatures and strain rates. The temperature of the samples was measured during and after the deformation process. The microstructure of the samples was examined by optical microscopy and scanning electron microscopy (SEM). The microstructural evolution during deformation process was investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The samples were subsequently subjected to electron microprobe analysis (EMPA) to investigate the effect of the deformation on the microsegregation of Mo, Cr, Si, and Mn.   It was observed that the temperature of the samples deformed at strain rates of 5 and 10 s-1 increases abruptly after the deformation stops. However, compression test at the lower strain rates of 1 and 0.5 s-1 revealed that a constant temperature was maintained in the early stage of deformation, followed by an increase until the maximum temperature was obtained. This temperature behavior can be explained by the microstructural evolution during the deformation process. Micrograph analysis revealed the formation of deformation bands (DBs) in highly strained regions. The DBs are highly effective sites for recrystallization. The interdendritic regions are suitable sites for the formation of DBs due to the high internal energy in these regions. EMPA indicated a tendency towards uphill diffusion of Mo in the DBs with increasing strain. The effect of strain on the dissolution of carbides in the band structure of bearing steel was investigated by measuring the volume fraction of carbides inside the band structure at different strain levels. The results indicate that carbide dissolution is influenced by strain.    The microstructural evolution inside the DBs was studied as a function of several properties: temperature, internal energy, and microsegregation. Compression of β brass revealed that twinning is the most prominent feature in the microstructure. EBSD analysis and energy calculations demonstrated that the twinning is not due to a martensitic process but rather the order/disorder transition during the deformation process. The effect of heat treatment at Tc (650°C) prior to deformation on the microstructure of β brass was also investigated, which revealed a relationship between twin formation and the anti-phase domain boundaries / <p>QC 20131104</p>
48

Estudos de solos tropicais para uso em pavimentação a partir de ensaios triaxiais estáticos / Study of tropical soils for use in pavement through static compression test

Idalíria de Moraes Dias 08 August 2007 (has links)
O presente trabalho discute comparativamente o comportamento mecânico de solos lateríticos e não lateríticos para uso em pavimentação. Para tanto foram ensaiados 3 pares de solos, sendo cada par constituído por solos de curvas granulométricas semelhantes, mesma classificação HRB e comportamentos distintos quanto à laterização. Foram realizados ensaios triaxiais convencionais do tipo CD saturado e não saturado sem controle de sucção e ensaios de compressão simples. A partir dos resultados dos ensaios foram modeladas as deformações elásticas em função das tensões de confinamento e determinadas as envoltórias de ruptura de Mohr-Coulomb. Concluiu-se que a maior resistência dos solos lateríticos está representada na componente coesão da envoltória de Mohr-Coulomb e que esta é mobilizada praticamente ao máximo desde o início em um ensaio triaxial. A diferença de resistência entre os ensaios saturados e não saturados também se mostrou na coesão, com a soma nesta da componente coesão aparente, fruto da sucção. O ângulo de atrito mostrou-se constante para as duas gêneses, tanto para a condição saturada como para a condição não saturada. Os solos lateríticos apresentam rigidez maior que os não lateríticos, tanto na condição saturada como na condição não saturada. Para os níveis de tensão de confinamento utilizados, a rigidez dos solos, de ambas as gêneses, na condição saturada, diminui com o aumento da tensão confinante. Também se observou que a ação da sucção existente nos ensaios não saturados proporciona, para ambas as gêneses, uma mudança da sensibilidade da rigidez ao aumento da tensão confinante. / The present paper discusses the mechanical behavior of lateritic and no-lateritic soils for use in pavement. To attain that goal, 3 pair soils were rehearsed, being each pair constituted by soils of similar granulometric curves, same HRB classification and different genesis. The experimental program was constituted of static triaxial compression test of the type saturated CD and of the type unsaturated without suction control and unconfined compression strength test. With the results of the tests, the elastic strains were modeled in function of the confinement stresses and the rupture paths of Mohr-Coulomb were determined. The analysis that the shear strength of the lateritic soils is greater than no-lateritic soil because of the cohesion. Since the begin it, the cohesion is mobilized practically to the maximum for both soils. The difference of shear strength between the saturated and unsaturated tests it is also cohesion, with the sum in that component of the cohesion apparent produced for suction. The angle of internal friction is constant for the two genesis as much for the saturated test as for the unsaturated test. The lateritic soils present greater stiffness than the no-lateritic soils, as much for saturated test as for unsaturated test. For the levels of confinement stresses used, in the saturated condition the stiffness of the soils decreases with the increase of the confinement stresses of both genesis. In addition, it was observed that the suction existent in the unsaturated testing produce a change of the sensibility of the soils stiffness to the increase of the confinement stress for both genesis.
49

Small Scale Plasticity With Confinement and Interfacial Effects

Habibzadeh, Pouya 15 February 2016 (has links)
The mechanical properties of crystalline metals are strongly affected when the sample size is limited to the micron or sub-micron scale. At these scales, the mechanical properties are enhanced far beyond classical predictions. Besides, the surface to volume ratio significantly increases. Therefore surfaces and interfaces play a big role in the mechanical properties of these micro-samples. The effect of different interfaces on the mechanical properties of micro-samples is not yet well understood. The aim of this project is to characterize, understand, and predict the effect of confinement on deformation mechanisms at micro-scale. In this study, micro-pillars were fabricated by Focused Ion Beam (FIB). Micro-pillars were homogeneously coated with thin films by magnetron sputtering and cathodic arc deposition. The mechanical properties of carbon-coated-, chromium coated-, naked-, annealed- and non-annealed micro-pillars were measured. Afterwards, the results of micro-compression tests and Automated Crystal Orientation Mapping on Transmission electron microscopy (ACOM TEM) were compared and led to some surprising new findings.Dislocations are blocked by amorphous- and even crystalline coating in the deformed samples. Parallel slip systems were detected in the chromium layer and the copper micro-pillar. Even though the chromium layer has parallel slip systems, dislocation pile-up at the interface was found after deformation. The most significant finding in this study concerns the back stress of the dislocation pile-up, which affects the dislocation sources and causes an increase of the flow stress to generate new dislocations from these sources. Thermal annealing increases the strength and flow stress of FIB fabricated micro samples. The annealing treatment restores the lattice that was damaged by the FIB fabrication process. A higher stress is required to initiate the dislocation nucleation in a pristine lattice. Techniques of fabrication and investigation were developed to study the role of confinement and interfaces on the mechanical properties of materials at micro scale. Mechanisms of deformation were unraveled and a better understanding of the key parameters was reached. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
50

Hot ductility of austenitic and duplex stainless steels under hot rolling conditions

Kömi, J. (Jukka) 09 November 2001 (has links)
Abstract The effects of restoration and certain elements, nitrogen, sulphur, calcium and Misch metal, on the hot ductility of austenitic, high-alloyed austenitic and duplex stainless steels have been investigated by means of hot rolling, hot tensile, hot bending and stress relaxation tests. The results of these different testing methods indicated that hot rolling experiments using stepped specimens is the most effective way to investigate the relationship between the softening and cracking phenomena under hot rolling conditions. For as-cast, high-alloyed and duplex stainless steels with a low impurity level, the cracking tendency was observed to increase with increasing pass strain and temperature, being minimal for the small strain of 0.1. No cracking occurred in these steels when rolled in the wrought condition. It could be concluded that the cracking problems are only exhibited by the cast structure with the hot ductility of even partially recrystallised steel being perfectly adequate. However, the recrystallisation kinetics of the high-alloyed austenitic stainless steels, determined by stress relaxation and double-pass rolling tests, were found to be so slow that only partial softening can be expected to occur between roughing passes under normal rolling conditions. In the duplex steel, the restoration is fairly fast so that complete softening can occur within typical interpass times in hot rolling, while certain changes in the phase structure take place as well. Sulphur was found to be an extremely harmful element in duplex stainless steel with regard to their hot ductility so that severe cracking can take place with sulphur content above 30 ppm. However, the effect of sulphur can be eliminated by reducing its content and by calcium or Misch metal treatments that significantly increase the number and decrease the average size of the inclusions. It seems that the desulphurisation capacity of an element is the most important property for assessing its usefulness in reducing the detrimental influence of sulphur. The hot ductility of type 316L stainless steel determined by tensile tests was found to be better for nitrogen content of 0.05 wt-% than 0.02%, while in double-hit tensile tests the hot ductility values were identical. The mechanism whereby nitrogen affects hot ductility remains unclear but a retarding effect on static recrystallisation was observed.

Page generated in 0.0909 seconds