Spelling suggestions: "subject:"computer assisted 1translation"" "subject:"computer assisted atranslation""
1 |
An Ethnographic Study of the Use of Translation Tools in a Translation Agency: Implications for Translation Tool DesignAsare, Edmund K. 14 July 2011 (has links)
No description available.
|
2 |
Conception et développement d'un outil d'aide à la traduction anglais/arabe basé sur des corpus parallèles / Conception and development of an English/Arabic translation aid tool based on parallel corporaYahiaoui, Abdelghani 29 May 2017 (has links)
Dans cette thèse, nous abordons la réalisation d’un outil innovant d’aide à la traduction anglais/arabe pour répondre au besoin croissant en termes d’outils en ligne d’aide à la traduction centrés sur la langue arabe. Cet outil combine des dictionnaires adaptés aux spécificités de la langue arabe et un concordancier bilingue issu des corpus parallèles. Compte tenu de sa nature agglutinante et non voyellée, le mot arabe nécessite un traitement spécifique. C’est pourquoi, et pour construire nos ressources lexicales, nous nous sommes basés sur l’analyseur morphologique de Buckwalter qui, d’une part, permet une analyse morphologique en tenant compte de la composition complexe du mot arabe (proclitique, préfixe, radical, suffixe, enclitique), et qui, d’autre part, fournit des ressources traductionnelles permettant une réadaptation au sein d’un système de traduction. Par ailleurs, cet analyseur morphologique est compatible avec l’approche définie autour de la base de données DIINAR (DIctionnaire Informatisé de l’Arabe), qui a été construite, entre autres, par des membres de notre équipe de recherche. Pour répondre à la problématique du contexte dans la traduction, un concordancier bilingue a été développé à partir des corpus parallèles Ces derniers représentent une ressource linguistique très intéressante et ayant des usages multiples, en l’occurrence l’aide à la traduction. Nous avons donc étudié de près ces corpus, leurs méthodes d’alignement, et nous avons proposé une approche mixte qui améliore significativement la qualité d’alignement sous-phrastique des corpus parallèles anglais-arabes. Plusieurs technologies informatiques ont été utilisées pour la mise en œuvre de cet outil d’aide à la traduction qui est disponible en ligne (tarjamaan.com), et qui permet à l’utilisateur de chercher la traduction de millions de mots et d’expressions tout en visualisant leurs contextes originaux. Une évaluation de cet outil a été faite en vue de son optimisation et de son élargissement pour prendre en charge d’autres paires de langues. / We create an innovative English/Arabic translation aid tool to meet the growing need for online translation tools centered on the Arabic language. This tool combines dictionaries appropriate to the specificities of the Arabic language and a bilingual concordancer derived from parallel corpora. Given its agglutinative and unvoweled nature, Arabic words require specific treatment. For this reason, and to construct our dictionary resources, we base on Buckwalter's morphological analyzer which, on the one hand, allows a morphological analysis taking into account the complex composition of the Arabic word (proclitic, prefix, stem, suffix, enclitic), and on the other hand, provides translational resources enabling rehabilitation in a translation system. Furthermore, this morphological analyzer is compatible with the approach defined around the DIINAR database (DIctionnaire Informatisé de l’Arabe - Computerized Dictionary for Arabic), which was constructed, among others, by members of our research team. In response to the contextual issue in translation, a bilingual concordancer was developed from parallel corpora. The latter represent a novel linguistic resource with multiple uses, in this case aid for translation. We therefore closely analyse these corpora, their alignment methods, and we proposed a mixed approach that significantly improves the quality of sub-sentential alignment of English-Arabic corpora. Several technologies have been used for the implementation of this translation aid tool which have been made available online (tarjamaan.com) and which allow the user to search the translation of millions of words and expressions while visualizing their original contexts. An evaluation of this tool has been made with a view to its optimization and its enlargement to support other language pairs.
|
3 |
Computer-Assisted Translation: An Empirical Investigation of Cognitive EffortMellinger, Christopher Davey 28 April 2014 (has links)
No description available.
|
4 |
Investigating the effectiveness of available tools for translating into tshiVendaNemutamvuni, Mulalo Edward 11 1900 (has links)
Text in English / Abstracts in English and Venda / This study has investigated the effectiveness of available tools used for translating from English into Tshivenḓa and vice versa with the aim to investigate and determine the effectiveness of these tools. This study dealt with the problem of lack of effective translation tools used to translate between English and Tshivenḓa. Tshivenḓa is one of South Africa’s minority languages. Its (Tshivenḓa) lack of effective translation tools negatively affects language practitioners’ work. This situation is perilous for translation quality assurance. Translation tools, both computer technology and non-computer technology tools abound for developed languages such as English, French and others. Based on the results of this research project, the researcher did make recommendations that could remedy the situation. South Africa is a democratic country that has a number of language-related policies. This then creates a conducive context for stakeholders with language passion to fully develop Tshivenḓa language in all dimensions. The fact is that all languages have evolved and they were all underdeveloped. This vividly shows that Tshivenḓa language development is also possible just like Afrikaans, which never existed on earth before 1652. It (Afrikaans) has evolved and overtaken all indigenous South African languages.
This study did review the literature regarding translation and translation tools. The literature was obtained from both published and unpublished sources. The study has used mixed methods research, i.e. quantitative and qualitative research methods. These methods successfully complemented each other throughout the entire research. Data were gathered through questionnaires and interviews wherein both open and closed-ended questions were employed. Both purposive/judgemental and snowball (chain) sampling have been applied in this study. Data analysis was addressed through a combination of methods owing to the nature of mixed methods research. Guided by analytic comparison approach when grouping together related data during data analysis and presentation, both statistical and textual analyses have been vital in this study. Themes were constructed to lucidly present the gathered data. At the last chapters, the researcher discussed the findings and evaluated the entire research before making recommendations and conclusion. / Iyi ṱhoḓisiso yo ita tsedzuluso nga ha kushumele kwa zwishumiswa zwi re hone zwine zwa shumiswa u pindulela u bva kha luambo lwa English u ya kha Tshivenḓa na u bva kha Tshivenḓa u ya kha English ndivho I ya u sedzulusa na u lavhelesa kushumele kwa izwi zwishumiswa uri zwi a thusa naa. Ino ṱhoḓisiso yo shumana na thaidzo ya ṱhahelelo ya zwishumiswa zwa u pindulela zwine zwa shumiswa musi hu tshi pindulelwa vhukati ha English na Tshivenḓa. Tshivenḓa ndi luṅwe lwa nyambo dza Afrika Tshipembe dzine dza ambiwa nga vhathu vha si vhanzhi. U shaea ha zwishumiswa zwa u pindulela zwine zwa shuma nga nḓila I thusaho zwi kwama mushumo wa vhashumi vha zwa nyambo nga nḓila I si yavhuḓi. Iyi nyimele I na mulingo u kwamaho khwaḽithi ya zwo pindulelwaho. Zwishumiswa zwa u pindulela, zwa thekhnoḽodzhi ya khomphiyutha na zwi sa shumisi thekhnoḽodzhi ya khomphiyutha zwo ḓalesa kha nyambo dzo bvelelaho u tou fana na kha English, French na dziṅwe. Zwo sendeka kha mvelelo dza ino thandela ya ṱhoḓisiso, muṱoḓisisi o ita themendelo dzine dza nga fhelisa thaidzo ya nyimele. Afrika Tshipembe ndi shango ḽa demokirasi ḽine ḽa vha na mbekanyamaitele dzo vhalaho nga ha dzinyambo. Izwi zwi ita uri hu vhe na nyimele ine vhafaramikovhe vhane vha funesa nyambo vha kone u bveledza Tshivenḓa kha masia oṱhe. Zwavhukuma ndi zwa uri nyambo dzoṱhe dzi na mathomo nahone dzoṱhe dzo vha dzi songo bvelela. Izwi zwi ita uri zwi vhe khagala uri luambo lwa Tshivenḓa na lwone lu nga bveledzwa u tou fana na luambo lwa Afrikaans lwe lwa vha lu si ho ḽifhasini phanḓa ha ṅwaha wa 1652. Ulu luambo (Afrikaans) lwo vha hone shangoni lwa mbo bveledzwa lwa fhira nyambo dzoṱhe dza fhano hayani Afrika Tshipembe.
Kha ino ṱhoḓisiso ho vhaliwa maṅwalwa ane a amba nga ha u pindulela na nga ha zwishumiswa zwa u pindulela. Maṅwalwa e a vhalwa o wanala kha zwiko zwo kanḓiswaho na zwiko zwi songo kanḓiswaho. Ino ṱhoḓisiso yo shumisa ngona dza ṱhoḓisiso dzo ṱanganyiswaho, idzo ngona ndi khwanthithethivi na khwaḽithethivi. Idzi ngona dzo shumisana zwavhuḓisa kha ṱhoḓisiso yoṱhe. Data yo kuvhanganywa hu tshi khou shumiswa dzimbudziso na u tou vhudzisa hune afho ho shumiswa mbudziso dzo vuleaho na dzo valeaho. Ngona dza u nanga sambula muṱoḓisisi o shumisa khaṱulo yawe uri ndi nnyi ane a nga vha a na data yo teaho na u humbela vhavhudziswa uri vha bule vhaṅwe vhathu vha re na data yo teaho ino ṱhoḓisiso.
viii
Tsenguluso ya data ho ṱanganyiswa ngona dza u sengulusa zwo itiswa ngauri ṱhoḓisiso ino yo ṱanganyisa ngona dza u ita ṱhoḓisiso. Sumbanḓila ho shumiswa tsenguluso ya mbambedzo kha u sengulusa data. Data ine ya fana yo vhewa fhethu huthihi musi hu tshi khou senguluswa na u vhiga. Tsenguluso I shumisaho mbalo/tshivhalo (khwanthithethivi) na I shumisaho maipfi kha ino ngudo dzo shumiswa. Ho vhumbiwa dziṱhoho u itela u ṱana data ye ya kuvhanganywa. Ngei kha ndima dza u fhedza, muṱodisisi o rera nga ha mawanwa, o ṱhaṱhuvha ṱhoḓisiso yoṱhe phanḓa ha u ita themendelo na u vhina. / African Languages / M.A. (African Languages)
|
5 |
Skoner en kleiner vertaalgeheuesWolff, Friedel 10 1900 (has links)
Rekenaars kan ’n nuttige rol speel in vertaling. Twee benaderings
is vertaalgeheuestelsels en masjienvertaalstelsels. By
hierdie twee tegnologieë word ’n vertaalgeheue gebruik—’n
tweetalige versameling vorige vertalings. Hierdie proefskrif
bied metodes aan om die kwaliteit van ’n vertaalgeheue te verbeter.
’n Masjienleerbenadering word gevolg om foutiewe inskrywings
in ’n vertaalgeheue te identifiseer. ’n Verskeidenheid leerkenmerke
in drie kategorieë word aangebied: kenmerke wat
verband hou met tekslengte, kenmerke wat deur kwaliteittoetsers
soos vertaaltoetsers, ’n speltoetser en ’n grammatikatoetser
bereken word, asook statistiese kenmerke wat met behulp van
eksterne data bereken word.
Die evaluasie van vertaalgeheuestelsels is nog nie gestandaardiseer
nie. In hierdie proefskrif word ’n verskeidenheid
probleme met bestaande evaluasiemetodes uitgewys, en ’n verbeterde
evaluasiemetode word ontwikkel.
Deur die foutiewe inskrywings uit ’n vertaalgeheue te verwyder,
is ’n kleiner, skoner vertaalgeheue beskikbaar vir toepassings.
Eksperimente dui aan dat so ’n vertaalgeheue beter
prestasie behaal in ’n vertaalgeheuestelsel. As ondersteunende
bewys vir die waarde van ’n skoner vertaalgeheue word ’n
verbetering ook aangedui by die opleiding van ’n masjienvertaalstelsel. / Computers can play a useful role in translation. Two approaches
are translation memory systems and machine translation
systems. With these two technologies a translation memory
is used— a bilingual collection of previous translations.
This thesis presents methods to improve the quality of a translation
memory.
A machine learning approach is followed to identify incorrect
entries in a translation memory. A variety of learning features
in three categories are presented: features associated with text
length, features calculated by quality checkers such as translation
checkers, a spell checker and a grammar checker, as well
as statistical features computed with the help of external data.
The evaluation of translation memory systems is not yet standardised.
This thesis points out a number of problems with existing
evaluation methods, and an improved evaluation method
is developed.
By removing the incorrect entries in a translation memory, a
smaller, cleaner translation memory is available to applications.
Experiments demonstrate that such a translation memory results
in better performance in a translation memory system.
As supporting evidence for the value of a cleaner translation
memory, an improvement is also achieved in training a machine
translation system. / School of Computing / Ph. D. (Rekenaarwetenskap)
|
6 |
Translating Expressive Prose using CAT Tools : An investigation into discerning the effects of segmentation in student translationsvon Rettig, Anna January 2014 (has links)
Computer Assisted Translation tools continue to become more ubiquitous, but translation students do not necessarily receive much training in using them, and may therefore find translating when using them very different to translating freehand. An experiment was conducted where a three Master’s students were each asked to translate two texts; one in a CAT tool and the other freehand, and the resulting target texts were inspected to determine whether they may have been affected by the segmentation performed by the CAT tool compared to freehand translations of the same text, and if so, how. There were indications that in certain cases, such as very long sentences, the CAT tool may act as a visual aid, and also indications that certain students may be more prone to follow the segmentation provided by the CAT tool than others. However, the influence of personal translator style and translator’s habitus cannot be disregarded and as such the differences that are apparent cannot be entirely attributed to the CAT tool.
|
7 |
Novel statistical approaches to text classification, machine translation and computer-assisted translationCivera Saiz, Jorge 04 July 2008 (has links)
Esta tesis presenta diversas contribuciones en los campos de la
clasificación automática de texto, traducción automática y traducción
asistida por ordenador bajo el marco estadístico.
En clasificación automática de texto, se propone una nueva aplicación
llamada clasificación de texto bilingüe junto con una serie de modelos
orientados a capturar dicha información bilingüe. Con tal fin se
presentan dos aproximaciones a esta aplicación; la primera de ellas se
basa en una asunción naive que contempla la independencia entre las
dos lenguas involucradas, mientras que la segunda, más sofisticada,
considera la existencia de una correlación entre palabras en
diferentes lenguas. La primera aproximación dió lugar al desarrollo de
cinco modelos basados en modelos de unigrama y modelos de n-gramas
suavizados. Estos modelos fueron evaluados en tres tareas de
complejidad creciente, siendo la más compleja de estas tareas
analizada desde el punto de vista de un sistema de ayuda a la
indexación de documentos. La segunda aproximación se caracteriza por
modelos de traducción capaces de capturar correlación entre palabras
en diferentes lenguas. En nuestro caso, el modelo de traducción
elegido fue el modelo M1 junto con un modelo de unigramas. Este
modelo fue evaluado en dos de las tareas más simples superando la
aproximación naive, que asume la independencia entre palabras en
differentes lenguas procedentes de textos bilingües.
En traducción automática, los modelos estadísticos de traducción
basados en palabras M1, M2 y HMM son extendidos bajo el marco de la
modelización mediante mixturas, con el objetivo de definir modelos de
traducción dependientes del contexto. Asimismo se extiende un
algoritmo iterativo de búsqueda basado en programación dinámica,
originalmente diseñado para el modelo M2, para el caso de mixturas de
modelos M2. Este algoritmo de búsqueda n / Civera Saiz, J. (2008). Novel statistical approaches to text classification, machine translation and computer-assisted translation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2502
|
Page generated in 0.1008 seconds