• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiplicidade de soluções para sistemas do tipo Schrödinger-Poisson

Oliveira, Alcionio Saldanha de 15 April 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 700931 bytes, checksum: e90ff8d817f64f35c7f45fb88026619e (MD5) Previous issue date: 2014-04-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we will use the Mountain Pass Theorem, Ekeland s Variational Principle, the Concentration-Compactness Principle, the Brezis & Nirenberg Method, Penalization Method and some properties involving Nehari manifolds to obtain existence and multiplicity of solutions for the following class of elliptic systems. () 8<: u + V (x)u + u = r(x; u) em R3; = u2 em R3; where r : R3 R ! R is a function that has critical growth. / Neste trabalho, usaremos o Teorema do Passo da Montanha, Princípio Variacional de Ekeland, o Princípio de Concentração de Compacidade, o Método de Brezis & Nirenberga, o Método de Penalização e propriedades envolvendo Variedades de Nehari para obter resultados de existência e multiplicidade de soluções positivas para uma classe de sistemas elípticos ( também conhecidos como sistemas do tipo Schrödinger- Poisson)(-) 8<: -u + V (x)u + u = r(x; u) em R3; = u2 em R3; onde r : R3 R ! R é uma função que possui crescimento crítico.
2

Uma versão abstrata do princípio de concentração de compacidade e aplicações

Souza, Diego ferraz de 14 October 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-31T13:04:57Z No. of bitstreams: 1 arquivo total.pdf: 1303363 bytes, checksum: ab5b7fb3a9fd956428d4b499afd3b94c (MD5) / Made available in DSpace on 2016-03-31T13:04:57Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 1303363 bytes, checksum: ab5b7fb3a9fd956428d4b499afd3b94c (MD5) Previous issue date: 2015-10-14 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we present an abstract version of the concentration compactness principle by Lions, extending it to Hilbert spaces. To do so, we include the concept of dislocation space, the pair (H;D) formed by a separable Hilbert space H (being H1(RN) the model case, N 3) and a set D of linear limited operators on H; as well as the concept of the D-weak convergence. The main result of this theory is, in a sense, a generalization of the famous theorem of Banach-Bourbaki-Alaoglu. Another important consequence of the theory is the equivalence of D-weak convergence in H1(RN);N 3 and strong convergence in Lp; for p 2 (2; 2 ) and D appropriate. With this version, we prove existence of solution for some classes of elliptic problem on unbounded domains, via constrained minimization method. / Neste trabalho apresentamos uma versão abstrata do princípio de concentração de compacidade de Lions, estendo-o para espaços de Hilbert. Para tanto, incluímos o conceito de espaço de deslocamento, o par (H;D); formado por um espaço de Hilbert H separável (sendo H1(RN) o caso modelo, N 3) e um conjunto D de operadores lineares limitados em H; além do conceito de convergência D-fraca. O principal resultado desta teoria é, em certo sentido, uma generalização do célebre Teorema de Banach- Alaoglu-Bourbaki. Outra importante consequência da teoria é a equivalência entre convergência D-fraca em H1(RN); N 3; e convergência forte em Lp; para p 2 (2; 2 ) e D adequado. Com esta versão, provamos existência de solução para algumas classes de problema elípticos em domínios ilimitados, via método de minimização com vínculo.
3

Concentration-compactness principle and applications to nonlocal elliptic problems

Souza, Diego Ferraz de 13 December 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:14:54Z No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) Previous issue date: 2016-12-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to analyze concentration-compactness principles for fractional Sobolev spaces based on the concentration compactness principle of P.-L. Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to K. Tintarev and K.-H Fieseler. As application, we address questions on compactness of the associated energy functional to the following nonlocal elliptic problems, $' ''''''&' ''''''% p qsu fpx; uq in RN; p qsu 􀀀 apxqu fpx; uq in RN; $&% p qsu 􀀀 V pxqu 􀀀 Kpxq u fpx; uq 􀀀 gpx; uq in R3; p q Kpxqu2 in R3; where 0   s   1; 0     1; 2 􀀀 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to a suitable Lebesgue space. We obtain existence results for a wide class of possible singular potentials apxq; not necessarily bounded away from zero and for oscillatory nonlinearities in both subcritical and critical growth range that may not satisfy the Ambrosetti-Rabinowitz condition. / O objetivo principal deste trabalho é analisar princípios de concentração de compacidade para espaços de Sobolev fracionários baseados na concentração de compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos questões sobre a compacidade do funcional energia associado aos seguintes problems elípticos não locais, $' ''''''&' ''''''% p qsu fpx; uq em RN; p qsu 􀀀 apxqu fpx; uq em RN; $&% p qsu 􀀀 V pxqu 􀀀 Kpxq u fpx; uq 􀀀 gpx; uq em R3; p q Kpxqu2 em R3; onde 0   s   1; 0     1; 2 􀀀 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
4

Sobre sistemas de equações do tipo Schrödinger-Poisson. / About systems of equations of the Schrödinger-Poisson type.

LIMA, Romildo Nascimento de. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T15:14:18Z No. of bitstreams: 1 ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) / Made available in DSpace on 2018-08-06T15:14:18Z (GMT). No. of bitstreams: 1 ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) Previous issue date: 2013-02 / Capes / Neste trabalho estaremos interessados em estudar resultados de existência e não existência de solução, comportamento do funcional energia e condição de Palais-Smale para sistemas de equações do tipo Schrödinger-Poisson; usaremos o método variacional. E, as soluções são pontos críticos do funcional energia associado ao problema. Para alcançar nossos objetivos, será fundamental o estudo das variedades de Ruiz e de Nehari, o Princípio Variacional de Ekeland, o teorema do Passo da Montanha, e o lema Concentração de Compacidade. / In this work we are interested in studying the results of existence and nonexistence of solution, behavior of the energy functional and Palais-Smale condition for systems of equations of the type Schrödinger-Poisson; by using variational approach. In fact the solutions are critical points of the energy functional associated with the problem. To achieve our goals, it is essential to study the Manifolds of Ruiz and Nehari, the Ekeland Variational Principle, the Mountain Pass theorem, and the Concentration-Compactness argument.

Page generated in 0.0913 seconds