Spelling suggestions: "subject:"concentração dde compacidade"" "subject:"concentração dde compacidades""
1 |
Multiplicidade de soluções para sistemas do tipo Schrödinger-PoissonOliveira, Alcionio Saldanha de 15 April 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 700931 bytes, checksum: e90ff8d817f64f35c7f45fb88026619e (MD5)
Previous issue date: 2014-04-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we will use the Mountain Pass Theorem, Ekeland s Variational
Principle, the Concentration-Compactness Principle, the Brezis & Nirenberg Method,
Penalization Method and some properties involving Nehari manifolds to obtain existence
and multiplicity of solutions for the following class of elliptic systems.
() 8<:
u + V (x)u + u = r(x; u) em R3;
= u2 em R3;
where r : R3 R ! R is a function that has critical growth. / Neste trabalho, usaremos o Teorema do Passo da Montanha, Princípio Variacional
de Ekeland, o Princípio de Concentração de Compacidade, o Método de Brezis &
Nirenberga, o Método de Penalização e propriedades envolvendo Variedades de Nehari
para obter resultados de existência e multiplicidade de soluções positivas para uma
classe de sistemas elípticos ( também conhecidos como sistemas do tipo Schrödinger-
Poisson)(-) 8<:
-u + V (x)u + u = r(x; u) em R3;
= u2 em R3;
onde r : R3 R ! R é uma função que possui crescimento crítico.
|
2 |
Uma versão abstrata do princípio de concentração de compacidade e aplicaçõesSouza, Diego ferraz de 14 October 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-31T13:04:57Z
No. of bitstreams: 1
arquivo total.pdf: 1303363 bytes, checksum: ab5b7fb3a9fd956428d4b499afd3b94c (MD5) / Made available in DSpace on 2016-03-31T13:04:57Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 1303363 bytes, checksum: ab5b7fb3a9fd956428d4b499afd3b94c (MD5)
Previous issue date: 2015-10-14 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we present an abstract version of the concentration compactness principle
by Lions, extending it to Hilbert spaces. To do so, we include the concept of dislocation
space, the pair (H;D) formed by a separable Hilbert space H (being H1(RN)
the model case, N 3) and a set D of linear limited operators on H; as well as the
concept of the D-weak convergence. The main result of this theory is, in a sense, a
generalization of the famous theorem of Banach-Bourbaki-Alaoglu. Another important
consequence of the theory is the equivalence of D-weak convergence in H1(RN);N 3
and strong convergence in Lp; for p 2 (2; 2 ) and D appropriate. With this version, we
prove existence of solution for some classes of elliptic problem on unbounded domains,
via constrained minimization method. / Neste trabalho apresentamos uma versão abstrata do princípio de concentração de
compacidade de Lions, estendo-o para espaços de Hilbert. Para tanto, incluímos o conceito
de espaço de deslocamento, o par (H;D); formado por um espaço de Hilbert H
separável (sendo H1(RN) o caso modelo, N 3) e um conjunto D de operadores lineares
limitados em H; além do conceito de convergência D-fraca. O principal resultado
desta teoria é, em certo sentido, uma generalização do célebre Teorema de Banach-
Alaoglu-Bourbaki. Outra importante consequência da teoria é a equivalência entre
convergência D-fraca em H1(RN); N 3; e convergência forte em Lp; para p 2 (2; 2 )
e D adequado. Com esta versão, provamos existência de solução para algumas classes
de problema elípticos em domínios ilimitados, via método de minimização com vínculo.
|
3 |
Concentration-compactness principle and applications to nonlocal elliptic problemsSouza, Diego Ferraz de 13 December 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:14:54Z
No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5)
Previous issue date: 2016-12-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to analyze concentration-compactness principles for
fractional Sobolev spaces based on the concentration compactness principle of P.-L.
Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to
K. Tintarev and K.-H Fieseler. As application, we address questions on compactness
of the associated energy functional to the following nonlocal elliptic problems,
$'
''''''&'
''''''%
p qsu fpx; uq in RN;
p qsu apxqu fpx; uq in RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3;
p q Kpxqu2 in R3;
where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to
a suitable Lebesgue space. We obtain existence results for a wide class of possible
singular potentials apxq; not necessarily bounded away from zero and for oscillatory
nonlinearities in both subcritical and critical growth range that may not satisfy the
Ambrosetti-Rabinowitz condition. / O objetivo principal deste trabalho é analisar princípios de concentração de
compacidade para espaços de Sobolev fracionários baseados na concentração de
compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em
espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos
questões sobre a compacidade do funcional energia associado aos seguintes problems
elípticos não locais,
$'
''''''&'
''''''%
p qsu fpx; uq em RN;
p qsu apxqu fpx; uq em RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3;
p q Kpxqu2 em R3;
onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço
de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de
potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por
uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos
subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
|
4 |
Sobre sistemas de equações do tipo Schrödinger-Poisson. / About systems of equations of the Schrödinger-Poisson type.LIMA, Romildo Nascimento de. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T15:14:18Z
No. of bitstreams: 1
ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5) / Made available in DSpace on 2018-08-06T15:14:18Z (GMT). No. of bitstreams: 1
ROMILDO NASCIMENTO DE LIMA - DISSERTAÇÃO PPGMAT 2013..pdf: 632336 bytes, checksum: 5661cad2fea6b9bb474c05bca0983c4b (MD5)
Previous issue date: 2013-02 / Capes / Neste trabalho estaremos interessados em estudar resultados de existência e não
existência de solução, comportamento do funcional energia e condição de Palais-Smale
para sistemas de equações do tipo Schrödinger-Poisson; usaremos o método variacional.
E, as soluções são pontos críticos do funcional energia associado ao problema. Para
alcançar nossos objetivos, será fundamental o estudo das variedades de Ruiz e de
Nehari, o Princípio Variacional de Ekeland, o teorema do Passo da Montanha, e o lema
Concentração de Compacidade. / In this work we are interested in studying the results of existence and nonexistence
of solution, behavior of the energy functional and Palais-Smale condition
for systems of equations of the type Schrödinger-Poisson; by using variational approach.
In fact the solutions are critical points of the energy functional associated with
the problem. To achieve our goals, it is essential to study the Manifolds of Ruiz
and Nehari, the Ekeland Variational Principle, the Mountain Pass theorem, and the
Concentration-Compactness argument.
|
Page generated in 0.0913 seconds