• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 59
  • 24
  • 14
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 308
  • 308
  • 58
  • 56
  • 43
  • 43
  • 36
  • 34
  • 28
  • 25
  • 24
  • 24
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Polymères hydrocarbonés superhydrophobes élaborés par polymérisation électrochimique : une alternative à la chimie du fluor ? / Hydrocarbon superhydrophobic polymers from electrochemical polymerization : an alternative to fluorine ?

Wolfs, Mélanie 13 December 2013 (has links)
Une surface est dite superhydrophobe si l’angle de contact d’une goutte d’eau avec cette surface est supérieur à 150°. Les domaines d’application de telles surfaces anti-adhérentes sont variées : du bâtiment avec l’élaboration de vitres anti-salissures au biomédical pour empêcher ou limiter l’adhésion bactérienne en passant par l’aéronautique. La superhydrophobie provient de la combinaison de deux paramètres : la structuration de la surface et la faible énergie de surface du matériau. Dans la plupart des références de la littérature, l’élaboration de telles surfaces s’effectue en plusieurs étapes. La polymérisation électrochimique de monomères conducteurs est une technique simple, rapide et reproductible pour obtenir des surfaces superhydrophobes. En effet, en une seule étape, le film de polymère se dépose et se structure. Cette méthode permet de contrôler les propriétés de mouillage en jouant sur les paramètres électrochimiques (charge de dépôt, substrat, sel électrolyte) ou sur la structure chimique du monomère. Ce travail porte sur l’élaboration et la caractérisation de films de polymères conducteurs obtenus par électrodéposition de dérivés du 3,4-éthylènedioxythiophene (EDOT), du 3,4-ethylènethiathiophene (EOTT) et du 3,4-propylenedioxythiophene (ProDOT) portant une chaîne hydrocarbonée de longueur variable. Des surfaces aux propriétés de mouillage polyvalentes (hydrophiles à superhydrophobes) ont été obtenues. De plus, l’influence de la part chimie et de la part physique sur l’angle de contact à l’eau a été déterminée pour les EDOT hydrocarbonés. Ce travail contribue à trouver une alternative aux composés fluorés. dans la domaine de la superhydrophobie. / Controlling wettability of a solid surface is important in many practical applications. This property, resulting from the combination a low surface energy material with a surface structuration, is commonly expressed by the contact angle of a water droplet on the surface. Surfaces with a water contact angle (θwater) larger than 150° are usually called superhydrophobic surfaces. Such surfaces are very interesting because of their expected self-cleaning or anti-contamination properties, which could be applied in various applications such as in biomedical devices, paint or in aeronautics for example. Among all the techniques to prepare superhydrophobic surfaces, electrochemical polymerization is a fast and versatile technique. In current literature on this field, the general approach is the use of highly fluorinated tails to reach the water-repellency. However, as observed in nature, fluorine is not necessary and can present environmental impacts. In this work, we focused on the synthesis of original monomers with hydrocarbon chain as hydrophobic part in order to find alternative to fluorine chemistry to prepare electropolymerized superhydrophobic surfaces. We succeeded to reach high water repellency (θwater > 150°) with hydrocarbon conducting polymers and we determined the influence of chemical and physical parts onto the water contact angle. We also found similar dewetting properties than the fluorinated series meaning the hydrocarbon conducting polymers could be a real alternative to fluorine chemistry.
142

Blendas condutoras a base de água para proteção à corrosão / Water-based conducting blends for corrosion protection

Melo, Luciana de Oliveira 16 December 2005 (has links)
A obtenção de blendas condutoras a base de água, ainda é pouco explorada e apresenta uma interessante alternativa ao uso de compostos poluentes como os cromatos na proteção à corrosão metálica. Os polímeros condutores apresentam propriedades anti-corrosivas e podem ser processados em meio aquoso, eliminando o uso de solventes orgânicos altamente tóxicos e agressivos para o meio ambiente. O presente trabalho consiste no estudo da proteção da corrosão metálica por revestimento de filmes de blendas contendo Poli(anilina) (PANI). As blendas foram obtidas à partir da mistura de uma suspensão aquosa de PANI com uma dispersão aquosa de Poli(metil metacrilato). O uso de técnicas como potencial zeta, espalhamento de luz dinâmico, análise térmica e microscopia eletrônica de varredura permitiram a caracterização da mistura homogênea obtida. Medidas através do método da sonda de quatro pontas mostraram que as blendas apresentam condutividade mesmo com baixas quantidades de PANI e a técnica de espectroscopia Raman mostrou a presença da forma condutora deste polímero nos filmes das blendas. Técnicas como microscopia óptica, potencial a circuito aberto, voltametria linear e espectroscopia de impedância eletroquímica permitiram avaliar a proteção à corrosão de eletrodos metálicos de ferro, cobre e níquel recobertos com filmes das blendas de PANI em diferentes meios corrosivos. As blendas mostraram eficiência contra a corrosão e apresentam-se como um novo material não poluente para a proteção à corrosão metálica. / The development of water-based conducting blends has not yet been very much explored and it presents itself as an interesting alternative to the use of polluting compounds such as chromates in the protection of metals from corrosion. The conducting polymers present anti-corrosion properties and can be processed in aqueous medium, eliminating the use of organic solvents, which are highly toxic and threatening to the environment. This thesis is based on the study of protection from metallic corrosion using poly(aniline) (PANI) coating blends. The blends have been obtained by mixing a PANI aqueous suspension with a poly(methyl metacrylate) aqueous dispersion. Techniques such as zeta potential, dynamic light scattering, thermal analysis and scanning electronic microscopy allowed the characterization of the homogeneous mixture obtained. Measurements carried out by the four-point probe method showed that the blends present conductivity even despite low PANI quantities. In addition, the Raman spectroscopy technique showed the presence of the conducting form of this polymer on the blend films. Techniques such as optical microscopy, open-circuit potential, linear voltammetry and impedance spectroscopy allowed the evaluation of the corrosion protection of the iron, copper, and nickel metallic electrodes coated with PANI blend films in different corrosives mediums. The blends showed efficiency against corrosion and they are therefore a new environmentally friendly material for metallic corrosion protection.
143

Synthèse et caractérisations thermoélectriques de polyaniline dopée / Synthesis and characterization of thermoelectric properties of doped polyaniline

Brault, Damien 13 December 2018 (has links)
Dans le contexte actuel de recherche d’efficacité énergétique, c’est-à-dire de maîtrise de l’énergie incluant la valorisation de l’énergie perdue, ce projet de thèse propose de synthétiser et caractériser les propriétés thermoélectriques de la polyaniline dopée. Nous avons ainsi synthétisé plusieurs échantillons de polyaniline et étudié l’influence des conditions de synthèse, du taux de dopage, du type de dopant, du taux de cristallinité ou de la mise en forme du matériau fini sur leurs propriétés thermoélectriques. Tout d’abord, nous avons mesuré les dépendances en température des conductivités électriques et thermiques ainsi que du coefficient Seebeck de la polyaniline dopée à l’acide chlorhydrique (Pani/HCl). Nous avons montré que lors de la synthèse, une température de polymérisation basse (223K) permet d’obtenir de meilleures conductivités électriques et donc des propriétés thermoélectriques améliorées. D’autre part, la valeur de la pression utilisée pour compresser le matériau et le mettre en forme doit être assez élevée (1.109GPa) pour optimiser les performances thermoélectriques. Afin de mieux comprendre les propriétés de transport de la polyaniline dopée au chlorure, nous nous sommes ensuite intéressés à ses propriétés magnétiques et calorifiques. Les mesures de la susceptibilité magnétique et de la capacité calorifique du polymère dopé en fonction de la température ont ainsi permis de déterminer la nature de ses états électroniques et de déduire le type de transport au sein du polymère. Enfin, nous avons synthétisé et étudié la polyaniline dopée au camphresulfonate en faisant varier le taux de dopage entre 30% et 90%. Les mesures de conductivités électriques, thermiques et du coefficient Seebeck en fonction de la température montrent qu’un optimum peut être trouvé pour un taux de dopage de 50%. / In the actual frame of energy efficiency research, namely, the energy management including wasted energy, this PhD project deals with the synthesis and characterization of thermoelectric properties of doped polyaniline. Consequently, polyanilines have been synthesized and the effect of the synthesis conditions, the doping level, the type of dopant, the crystallinity or the sample preparation of the final material on the thermoelectric properties have been studied. Firstly, we measured the thermal dependencies of electrical and thermal conductivities as well as Seebeck coefficient hydrochloric acid doped polyaniline (Pani/HCl). We showed that a low polymerization temperature (223K) lead to better electric conductivity and so improved thermoelectric properties. On the other side, the pressure used to compress powders should as high as 1.109GPa to optimize the thermoelectric performance. Then, in order to have a better understanding of the transport properties of chloride doped polyaniline, we investigate the magnetic and thermal properties. Measurements of the specific heat and the magnetic susceptibility of chloride doped polyaniline as a function of the temperature allowed to determine the electronic states and the mechanism of transport in the polymer chains. Finally, we synthesized and studied camphorsulfonate doped polyaniline by varying the doping level between 30% and 90%. The electrical, thermal conductivities and Seebeck coefficient as a function of the temperature show clearly on optimum of doping level at 50% with camphorsulfonate doping agent.
144

Physical and Electrical Characterization of Triethanolamine Based Sensors for NO₂ Detection and the Influence of Humidity on Sensing Response

Peterson, Zachariah Marcus 01 January 2011 (has links)
Triethanolamine (TEA) is a semiconducting polymer which exhibits a resistance change when exposed to various gases. The polymer also exhibits a number of reactions with nitrogen dioxide, with the reaction products being heavily dependent on the presence or absence of water vapor. Previous studies have attempted the incorporation of a TEA-carbon nanoparticle composite as the active sensing layer in a chemresistive sensor for detection of NO₂. The incorporation of carbon nanoparticles in the polymer nanocomposite was thought to amplify the sensor's response. There are a number of chemical reactions that can occur between TEA and NO₂, with the reaction products being heavily dependent on the presence and amount of water vapor in the environment. Because of this influence, it becomes necessary to know to what degree the presence of water vapor interferes with the sensing response. In this work we show that the sensor exhibits a reversible resistance change as background humidity changes. This sensitivity to humidity changes is so large that it renders undetectable any resistance change that could be caused by the reaction of TEA with NO₂. Furthermore, we show that the presence of low levels of NO₂ do not interfere with adsorption of water vapor. The detection mechanism is based on measuring resistance changes in the TEA film due to the adsorption/desorption of water vapor. The sensing response can be described by Langmuir adsorption by using a site-based model for the polymer film resistance. Breakdown of the polymer film over time due to continuous adsorption of water vapor, as well as photodegradation of the polymer film, will be discussed. SEM images will also be presented showing growth of crystallites on the electrode walls, as well as experimental results demonstrating degradation of the sensing film during sensor operation.
145

Polymer electrochromism and surface plasmons combined on metallic diffraction gratings

Garnier, Jérôme January 2008 (has links)
All conducting polymers are potentially electrochromic, owing to the injection of charge carriers that changes their electronic structure and results in a shift of their optical absorption towards higher wavelengths. PEDOT-PSS and PEDOT-S are very promising materials in terms of electrochromic properties, due to the good contrast existing between their doped and undoped forms. However this contrast has to be enhanced in order to design more efficient electrochromic devices, and new solutions should thus be found in order to solve this issue. Surface plasmons are described as electromagnetic waves propagating along the surface between a dielectric and a metal. Coupled to an incident radiation, they create an energy loss in the light transmitted and reflected by the interface. When the metallic surface is periodically corrugated, this absorption phenomenon due to plasmonic resonance occurs at a specific wavelength that depends on several parameters, such as the incidence angle, the dielectric constants of the two media and the grating period. By coating metallic gratings with electrochromic polymers, we may thus be able to trigger a plasmonic absorption at a given wavelength and shift it upon reduction or oxidation of the material. Electrochromic devices consisting of PEDOT-PSS or PEDOT-S spin-deposited on gold and silver gratings were investigated by UV-visible reflectance measurements. The periodically corrugated structures were reproduced from commercial gratings by soft nanolithography and were analyzed by AFM. Some electrochromic cells exhibited new colors or a high shift of the plasmonic resonance upon redox switching of the polymer film. Depending on the step and the nature of the grating employed, this shift could reach 20 nm in the case of PEDOT-PSS and more than 100 nm for PEDOT-S. A theoretical model was found to predict the wavelength of plasmonic excitation and the orientation of the shift.
146

Influence of poly(N-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability

Tiwari, Ashutosh, Sharma, Yashpal, Hattori, Shinya, Terada, Dohiko, Sharma, Ashok K., Turner, Anthony P. F., Kobayashi, Hisatoshi January 2013 (has links)
This study investigates the effect on: 1) the bulk surface; and 2) the three-dimensional non-woven microfabric scaffolds of poly(N-isopropylacylamide)-CNT-polyaniline on growth and viability of  mice fibroblast cells L929. The poly(N-isopropylacylamide)-CNT-polyaniline was prepared using coupling chemistry and electrospinning was then used for the fabrication of responsive, nonwoven microfabric scaffolds. The electrospun microfabrics were assembled in regular three-dimensional scaffolds with OD: 400-500 mm; L: 6-20 cm. Mice fibroblast cells L929 were seeded on the both poly(N-isopropylacylamide)-CNT-polyaniline bulk surface as well as non-woven microfabric scaffolds. Excellent cell proliferation and viability was observed on poly(N-isopropylacylamide)-CNT-polyaniline non-woven microfabric matrices in compare to poly(N-isopropylacylamide)-CNT-polyaniline bulk and commercially available Matrigel™ even with a range of cell lines up to 168 h. Temperature dependent cells detachment behaviour was observed on the poly(N-isopropylacylamide)-CNT-polyaniline scaffolds by varying incubation at below lower critical solution temperature (LCST) of poly(N-isopropylacylamide). The results suggest that poly(N-isopropylacylamide)-CNT-polyaniline non-woven microfabrics could be used as a smart matrices for applications in tissue engineering. / European Commission FP7 (PIIF-GA-2009-254955), JSPS, JST-CREST and MEXT
147

Work function fluctuation analysis of polyaniline films

West, Ryan Matthew 20 March 2013 (has links)
In this thesis, the development of a novel experimental technique for measuring the spontaneous, stochastic work function (WF) fluctuations of conducting polymer films, at equilibrium, is discussed. Polyaniline (PANI) is studied as a representative conducting polymer. This technique utilizes an insulated-gate field-effect transistor (IGFET) with PANI gate electrode (PANI-IGFET). The fluctuations of PANI WF are transduced into measurable drain current fluctuations of the device. By analyzing these fluctuations while systematically controlling the temperature, electric field and doping level, a model of WF fluctuations in PANI films is developed. These experiments suggest that the source of WF fluctuations is the hopping of charge carriers, or trapping/detrapping of charge carriers, around the Fermi level of the PANI film at the PANI-insulator interface. This process is thermally activated with a field and doping dependent activation energy in the range of 0.1 to 0.5 eV. Thus, this new technique provides detailed information about charge-carrier dynamics in the space-charge region of the PANI film, at equilibrium. These results have important implications for organic electronics and furthering fundamental understanding of the relationship between doping, disorder and work function in organic semiconductors.
148

Design and synthesis of and π-stacked conjugated oligomers and polymers

Jagtap, Subodh Prakash 16 March 2012 (has links)
Interchain interactions between π-systems have a strong effect on the properties of conjugated organic materials that find application in devices such as light emitting diodes (OLEDs), organic photovoltaics (OPVs), and field effect transistors (FETs). We have prepared covalently-stacked oligo(1,4-phenylene ethynylene)s and oligo(1,4-phenylene vinylene)s to study the influence of chain-chain interactions on the electronic structure of closely packed conjugated units. These serve as models for segments of conjugated materials in thin film devices. Extension of this concept has allowed us to prepare multi-tiered systems that display the influence of pi-stacking. The stacked architectures were prepared by multi-step synthesis of the scaffolds, followed by metal-catalyzed cross coupling reactions (Sonogashira, Heck, Suzuki couplings) to incorporate the conjugated oligomers. The optical and electrochemical properties of these stacked compounds and polymers were compared to their unstacked linear counterparts. These studies provide a platform for the exploration of the nature of charge carriers and excitons in a broad class of materials that have significant potential in addressing challenges in power generation, lighting and electronics.
149

Polyaniline Gold Nanocomposites

Smith, Jon Anthony 22 November 2004 (has links)
Polyaniline/Gold Nanocomposites J. Anthony Smith 141 Pages Directed by Dr. Ji and #345;?anata The expectation that it is possible to create a range of new materials from two basic components, polyaniline fibers and gold particles is explored. Three synthetic methods were employed each of which created different materials and required different investigation techniques. The methods are: chemical, one step aniline oxidation / AuCl4- reduction; electrochemical/chemical, a two-step composite growth achieved by electrochemical polyaniline thin film growth followed by film immersion in AuCl4- solution and spontaneous reduction to gold particles; electrochemical, resulting in freestanding polyaniline thin film/Au nanoparticles carried out by electrochemical stripping of a polyaniline thin film grown over a sacrificial gold layer in the presence halide solutions. The incorporation of particles was shown to affect film morphology and electrical properties in all synthetic methods. The changes are in large part attributed to the development of a contact potential between the polyaniline and the gold particles. Applications for the composites include use as chemically sensitive layers, corrosion inhibition materials, and use as probes to evaluate nanoparticle substrate interactions.
150

Novel conducting polymeric materials: 1. Fluoroalkylated polythiophenes 2. Stacked oligothiophenes as models for the interchain charge transfer in conducting polymers

Li, Ling 12 July 2004 (has links)
Polythiophenes have great potential as semiconductors for use in organic field effect transistors and light emitting diodes. Recent research has been focused on the design, synthesis and characterization of fluorinated polythiophenes and oligothiophenes. Various fluoroalkyl side chains have been introduced to induce polymer self-assembly, to control the electronic properties of the conjugated backbone, and to modify the solubility of the polymer in supercritical CO2. This work led to the preparation of poly(3-(perfluorooctyl)thiophene), which is one of only a few examples of n-dopable polythiophenes, and is the first supercritical CO2-soluble conducting polymer. An alternating copolymer consisting of 3-perfluoroakyl and 3-alkylthiophene units has been synthesized. This polymer, with alternating electron-donating and withdrawing substituents, has a high quantum yield for fluorescence in solution relative to the two homopolymers, and strong fluorescence in solid state. Based on the study on its nanocrystals, the unusual photophyiscs may be due to the formation of the supramolecular structure with hexagonal packing. A novel thiophene monomer, 3-(1,1-difluorooctyl)thiophene, was prepared to further tune the electronic structure of polythiophenes by changing the fluorination pattern of side chains, while retaining solubility in organic solvents by virtue of the hydrocarbon side chain. a-Hexyl-w-perfluorohexylsexithiophene was synthesized to make a novel amphiphilic material for use in TFTs. Models for interchain charge transfer in doped conducting polymers were also developed. Stacked and unstacked conjugated oligomers have been synthesized as models for conducting polymers. The bis(radical cation) form and the dication-neutral form of compounds in which conjugated oligomers are held in a stacked arrangement are shown to coexist and in equilibrium with each other. The coexistence of these two forms further suggests that both may serve as charge carriers. Interconversion between these forms by disproportionation mimics a possible mechanism for charge migration in doped conjugated polymers.

Page generated in 0.3205 seconds