• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 58
  • 58
  • 19
  • 13
  • 12
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On-Metal Synthesis of Some Aryl Substituted Rhenium &#951<sup>5</sup> Cyclopenta[C] Pyridazyl Complexes

Sriramulu, Phenahas Gandu 01 August 2010 (has links)
Heterocyclic organic and organometallic compounds (e.g. polypyrrole) and their derivatives have been of great interest for conductive polymers due to their novel properties and environmental stability as compared to non-aromatic analogs (e.g. polyacetylene). We are interested in synthesizing organometallic pyridazines and rhenium pyridazyl complexes for polymer research. SeveraI5,6-fused ring pyridazines (1,2-CsH3(CRNH)(CRN) have been synthesized and characterized. Additionally, pyridazyl complexes of rhenium were synthesized in three steps beginning from fulvenes 1,2-CsH3(COHR)(COR). On-Metal synthesis and characterization of (Re(CO)3 {1,2- CSH3(CRN)(CRN)}] (R=C6RtOMe, C6RtCI, C4H30) and some off-metal pyridazines are reported here. Our research is focused on synthesis of a variety of 5,6- fused ring pyridazines which will serve as synthetic models and building blocks for organic and organometallic conducting polymers. Our research focused on synthesis of 5 membered pyridazines and their organometallic rhenium complexes for polymer studies. Several aryl-substituted 5,6- fused ring pyridazines have been synthesized and characterized.
22

Preparation And Characterization Of Conductive Polymer Composites, And Their Assessment For Electromagnetic Interference Shielding Materials And Capacitors

Koysuren, Ozcan 01 April 2008 (has links) (PDF)
The aim of this study was to improve electrical properties of conductive polymer composites. For this purpose, various studies were performed using different materials in this dissertation. In order to investigate the effect of alternative composite preparation methods on electrical conductivity, nylon 6/carbon black systems were prepared by both in-situ polymerization and melt-compounding techniques. When compared with melt compounding, in-situ polymerization method provided enhancement in electrical conductivity of nylon 6 composites. Furthermore, it was aimed to improve electrical conductivity of polymer composites by modifying surface chemistry of carbon black. 1 wt. % solutions of 3-Aminopropyltriethoxysilane and formamide were tried as chemical modifier, and treated carbon black was melt mixed with low-density polyethylene (LDPE) and nylon 6. According to electron spectroscopy for chemical analysis (ESCA), chemicals used for surface treatment may have acted as doping agent and improved electrical conductivity of polymer composites more than untreated carbon black did. Formamide was more effective as dopant compared to the silane coupling agent. In order to investigate electromagnetic interference (EMI) shielding effectiveness and dielectric properties of conductive polymer composites, 1, 2 and 3 wt. % solutions of formamide were tried as chemical modifier and treated carbon black was melt mixed with poly(ethylene terephthalate) (PET). Composites containing formamide treated carbon black exhibited enhancement in electrical conductivity, EMI shielding effectiveness and dielectric constant values compared to composites with untreated carbon black. In order to enhance electrical conductivity of polymer composites, the selective localization of conductive particles in multiphase polymeric materials was aimed. For this purpose, carbon nanotubes (CNT) were melt mixed with polypropylene (PP)/PET. Grinding, a type of solid state processing technique, was applied to PP/PET/CNT systems to reduce the average domain size of blend phases and to improve interfacial adhesion between these phases. Grinding technique exhibited improvement in electrical conductivity and mechanical properties of PP/PET/CNT systems at low PET compositions. To investigate application potential of conductive polymer composites, polyaniline (Pani)/carbon nanotubes (CNT) composites were synthesized and electrochemical capacitance performances of these systems, as electrode material in electrochemical capacitors, were studied. Polyaniline/carbon nanotubes composites resulted in a higher specific capacitance than that of the composite constituents. Pseudocapacitance behavior of Pani might contribute to the double layer capacitance behavior of nanotubes. Additionally, as an alternative to Pani/CNT systems, polyaniline films were deposited on treated current collectors and electrochemical capacitance performances of these electrode systems were investigated. The highest specific capacitance of polyaniline/carbon nanotubes composites was 20 F/g and this value increased to 35.5 F/g with polyaniline film deposited on treated current collector.
23

Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell

Yeetsorn, Rungsima 28 September 2010 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have the potential to play a major role as energy generators for transportation and portable applications. One of the current barriers to their commercialization is the cost of the components and manufacturing, specifically the bipolar plates. One approach to preparing PEMFCs for commercialization is to develop new bipolar plate materials, related to mass production of fuel cells. Thermoplastic/carbon filler composites with low filler loading have a major advantage in that they can be produced by a conventional low-cost injection molding technique. In addition, the materials used are inexpensive, easy to shape, and lightweight. An optimal bipolar plate must possess high surface and bulk electronic conductivity, sufficient mechanical integrity, low permeability, and corrosion resistance. However, it is difficult to achieve high electrical conductivity from a low-cost thermoplastic composite with low conductive filler loading. Concerns over electrical conductivity improvement and the injection processability of composites have brought forth the idea of producing a polypropylene/three-carbon-filler composite for bipolar plate application. The thesis addresses the development of synergistic effects of filler combinations, investigating composite conductive materials and using composite bipolar plate testing in PEMFCs. One significant effect of conductive network formation is the synergetic effects of different carbon filler sizes, shapes, and multiple filler ratios on the electrical conductivity of bipolar plate materials. A polypropylene resin combined with low-cost conductive fillers (graphite, conductive carbon black, and carbon fibers with 55 wt% of filler loading) compose the main composite for all investigations in this research. Numerous composite formulations, based on single-, two-, and three-filler systems, have been created to investigate the characteristics and synergistic effects of multiple fillers on composite conductivity. Electrical conductivity measurements corresponding to PEMFC performance and processing characteristics were investigated. Experimental work also involved other ex-situ testing for the physical requirements of commercial bipolar plates. All combinations of fillers were found to have a significant synergistic effect that increased the composite electrical conductivity. Carbon black was found to have the highest influence on the increase of electrical conductivity compared to the other fillers. The use of conjugated conducting polymers such as polypyrrole (PPy) to help the composite blends gain desirable conductivities was also studied. Electrical conductivity was significantly improved conductivity by enriching the conducting paths on the interfaces between fillers and the PP matrix with PPy. The conductive network was found to have a linkage of carbon fibers following the respective size distributions of fibers. The combination of Fortafil and Asbury carbon fiber mixture ameliorated the structure of conductive paths, especially in the through-plane direction. However, using small fibers such as carbon nanofibers did not significantly improve in electrical conductivity. The useful characteristics of an individual filler and filler supportive functions were combined to create a novel formula that significantly improved electrical conductivity. Other properties, such as mechanical and rheological ones, demonstrate the potential to use the composites in bipolar plate applications. This research contributes a direction for further improvement of marketable thermoplastic bipolar plate composite materials.
24

Propriedades piezo, piroelétrica e dielétrica de compósitos cerâmica ferroelétrica/polímero dopados com polianilina /

Fuzari Junior, Gilberto de Campos. January 2011 (has links)
Orientador: Walter Katsumi Sakamoto / Banca: José Antônio Malmonge / Banca: Elson Longo da Silva / Banca: Maria Aparecida Zaghete Bertochi / Banca: Paulo Sérgio Varoto / Resumo: No presente trabalho foram preparados filmes compósitos de PZT/PVDF com PAni por mistura mecânica e posterior prensagem a quente. A PAni foi inserida de duas maneiras distintas no compósito: recobrindo parcialmente os grãos cerâmicos; e disposta separadamente aos grãos. Foram controladas as razões volumétricas dos constituintes dos compósitos e a condutividade da PAni que pode ser controlada pelo seu grau de protonação. A grande vantagem de sistemas com grãos recobertos é garantir a proximidade de canais de condução (ou polarização) com o grão, além de impossibilitar a percolação da fase condutora se o compósito exibir conectividade 0-3. Para o caso das amostras preparadas com PAni (dopada) disposta separadamente do grão, quando o limiar de percolação é alcançado, torna-se impossível o processo de polarização. Para compósitos com grãos recobertos, os melhores resultados em relação às propriedades de eletroatividade (e polarização) são encontrados acima da concentração crítica, onde o padrão de conectividade 0-3 já não é válido. As grandes vantagens obtidas usando compósitos com condutividade controlada são principalmente o tempo mais curto e o campo elétrico inferior usado para a polarização. Os resultados mostraram que é possível obter filmes compósitos com baixo conteúdo de cerâmica recoberta, que apresentem boas propriedades de eletroatividade e flexibilidade. Como uma de suas possíveis aplicações, o compósito mostrou boas propriedades como sensor fototérmico. / Abstract: In the present work composite films of PZT-PAni/PVDF were prepared hot pressing the mixture of components mechanically mixed. The PAni was inserted into the composite by two different ways: partially recovering the ceramic grains; and dispersed separately from the ceramic grains. Volumetric ratio of the single phases of the composite and the electrical conductivity of the PAni were controlled. The advantage of systems with ceramic grains partially recovered is that it allow the neighborhood of conduction channels (or poling) with the ceramic grain, besides to prevent the percolation of the conducting phase if the composite exhibit 0-3 connectivity. For the case of samples prepared with doped PAni dispersed separately from the ceramic grain, the poling process is not able when the limiar of percolation is reached. For composites with partially recovered grains the best results concerned to the electroactive properties (and polarization) are obtained over the critical concentration where the 0-3 connectivity pattern is not valid. The advantages obtained using composite with controlled conductivity are mainly the poling short time of polarization and the lower electric field. The results showed the possibility to obtain composite films with low content of recovered ceramic grain, which shows good electroactive property with flexibility. The composite also showed good properties as photothermal sensor / Doutor
25

Síntese e caracterização de derivados de polipirrol para aplicação em dispositivos eletroquímicos / Synthesis and characterization of polypyrrole derivatives for application in electrochemical devices

Nogueira, Fred Augusto Ribeiro 11 May 2010 (has links)
In this study was studied the capacitive properties of films poly (12-pyrrol-1 yl dodecanoic acid) and electrochromic properties of films poly [1 - (3-brominepropylpyrrole)] prepared by electrochemical methods and deposited on ITO. The polymers were obtained using electrochemical methods and characterized by electrochemical, morphological and optical techniques. Cyclic voltammograms of both polymers showed the presence of a redox couple attributed to the doping-undoped process the polymer. The analysis by infrared spectroscopy for poly (12-pyrrol-1 yl dodecanoic acid) suggested the coupling of the monomers through the alpha positions. The capacitive properties of a poly (12-pyrrol-1 yl dodecanoic acid) were investigated by calculation of the coulombic efficiency (86.6%) and specific capacitance (291 F g-1) obtained from the charge-discharge curves of films obtained by galvanostatic method. The values obtained for these parameters demonstrated the possibility of applications of these films in capacitive devices. The UV-Vis spectra for films of poly [1 - (3-brominepropylpyrrole)] showed absorption bands at &#61548; = 335 and 500 nm. The films of poly [1 - (3-brominepropylpyrrole)] show variations in color depending on the applied potential. The electrochromic properties of these films were investigated by calculation of chromatic contrast (18.97 and 20.46 %), coulombic efficiency (61.1%), and electrochromic (248.6 and 470.2 cm2 C-1). The values obtained for these parameters demonstrated the possibility of applications of these films in electrochromic devices / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho foram estudadas as propriedades capacitivas de filmes de poli [ácido (12-pirolildodecanóico)] e as propriedades eletrocrômicas de filmes de poli [1-(3-bromopropilpirrol)] preparados por métodos eletroquímicos e depositados sobre ITO. Os polímeros foram obtidos através dos métodos eletroquímicos e caracterizados por técnicas eletroquímicas, morfológicas e ópticas. Os voltamogramas cíclicos de ambos os polímeros evidenciaram a presença de um par redox atribuído ao processo de dopagem-desdopagem do polímero. As análises por espectroscopia de infravermelho para os filmes poliméricos de poli [ácido (12-pirolildodecanóico)] sugeriram o acoplamento dos monômeros através das posições alfa. As propriedades capacitivas do filme de poli [ácido (12-pirolildodecanóico)] foram investigadas através de cálculos da eficiência coulômbica (86,6%) e da capacitância específicas (291 F g-1) obtidas a partir das curvas de carga-descarga dos filmes obtidos pelo método galvanostático. Os valores obtidos para esses parâmetros demonstraram a possibilidade de aplicações destes filmes em dispositivos capacitivos. Os espectros por UV-Vis para os filmes de poli [1-(3-bromopropilpirrol)] mostraram bandas de absorção em &#61548; = 335 e 500 nm. Os filmes de poli [1-(3-bromopropilpirrol)] apresentaram variações de coloração conforme o potencial aplicado. As propriedades eletrocrômicas destes filmes foram investigadas através de cálculos do contraste cromático (18,97 e 20,46 %), eficiência coulômbica (61,1 %) e eletrocrômica (248,6 e 470,2 cm² C-1). Os valores obtidos para esses parâmetros demonstraram a possibilidade de aplicações destes filmes em dispositivos eletrocrômicos.
26

Electrode 3D de PEDOT : PSS pour la détection de métabolites électrochimiquement actifs de Pseudomonas aeruginosa / PEDOT : PSS 3D electrodes for detection of Pseudomonas aeruginosa electroactive metabolites

Oziat, Julie 14 November 2016 (has links)
Lors d’infections, l'identification rapide des micro-organismes est cruciale pour améliorer la prise en charge du patient et mieux contrôler l'usage des antibiotiques. L’électrochimie présente plusieurs avantages pour les tests rapides : elle permet des analyses in situ, faciles et peu chères dans la plupart des liquides. Son utilisation pour l’identification bactérienne est récente et provient de la découverte de molécules donnant de forts signaux redox dans le surnageant de bactéries du genre Pseudomonas.Cette thèse s’intéresse à l’analyse de surnageants de la bactérie Pseudomonas aeruginosa, 4e cause de maladies nosocomiales en Europe. Tout d’abord, l’intérêt de l’analyse électrochimique de surnageants de culture dans une visée d’identification a été évalué. Pour cela, après l’étude de 4 potentiels biomarqueurs de la présence de cette bactérie en solutions modèles, l’analyse électrochimiques de surnageant de plusieurs souches P. aeruginosa a été effectuée. Les résultats obtenus sont prometteurs. Ils mettent en évidence une signature électrochimique complexe et souche-dépendante du surnageant.La suite de la thèse s’est intéressée à l’amplification de la détection électrochimique grâce à l’utilisation du polymère conducteur PEDOT:PSS. Il a été choisi pour ses bonnes propriétés électrochimiques, sa biocompatibilité et sa facilité de mise en forme. Il a tout d’abord été utilisé sous forme de films minces pour confirmer son pouvoir d’amplification. Une électrode 3D a ensuite été fabriquée par lyophilisation. L’utilisation de ce type d’électrode permet d’amplifier encore la détection en augmentant la surface d’échange mais aussi en confinant les bactéries dans l'électrode. / During infections, microorganisms fast identification is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis in most liquids. Its use for bacterial identification is recent and comes from the discovery of molecules giving strong redox signals in the bacterial supernatant of the Pseudomonas genus.This thesis focuses on the supernatants analysis of the bacterium Pseudomonas aeruginosa. This bacteria is the fourth cause of nosocomial infections in Europe. First, the interest of supernatants electrochemical analysis for identification was evaluated. For this, after the study of four redox biomarkers of this bacterium in model solutions, supernatant electrochemical analysis of several strains of P. aeruginosa was performed. The results are promising. They highlight a complex strain-dependant electrochemical signature of the supernatant.Following, we focused in the amplification of the electrochemical detection through the use of the conductive polymer PEDOT: PSS. This polymer was chosen for its good electrochemical properties, its biocompatibility and its easy shaping. It was first used as a thin films to confirm its amplification power through biomarker adsorption. Then, a 3D electrode was made by freeze drying. The use of this type of electrode can further amplify the detection by increasing the exchange surface as well as confining the bacteria in the electrode.
27

Vapor sensing behavior of sensor materials based on conductive polymer nanocomposites

Li, Yilong 30 January 2020 (has links)
This work aims to investigate the vapor sensing behavior of conductive polymer composites (CPCs). In connection with the protection of the environment and human beings, sensing of different kinds of chemical vapors is of increasing importance. At the moment, four kinds of vapor sensors are widely investigated and reported, namely semiconducting metal oxide sensors (MO), conjugated polymer sensors, carbonaceous nanomaterial based sensors, and CPC based sensors. Due to their unique component systems, the different sensor types are based on different sensing mechanisms resulting in different potential application ranges. In consideration of cost and processability, CPC based vapor sensors are promising owning to their low cost, excellent processability, and designable compositions. In terms of vapor sensing behavior of CPC sensors, the interaction between the polymer and the organic vapor is a decisive factor in determining the sensing performance of CPCs. Ideally, the chosen polymer matrix should be able to swell without dissolving during vapor exposure so that the conductive network within the matrix can be disconnected, giving rise to the resistance change of CPCs. In some reported cases, polymers such as PLA and polycaprolactone (PCL) are degradable polymers, which are not durable when being exposed to environmental conditions for a long time. Therefore, it is necessary to make sure whether the selected polymers are resistive to vapors or not. There are two options for the polymer selection. One is to select a polymer that is only swellable in a specific or few organic solvents; another one is to select a polymer that is swellable to a variety of solvents. Since CPC sensors are used for detecting as many as possible hazardous chemicals to human beings or environment, the second case is more desired because of its broader window of detection. The solubility parameter is effective to characterize the interaction of polymers and organic solvents/vapors, which was firstly proposed by Charles Hansen. Initially, the Hansen solubility parameter (HSP) was used to predict the compatibility between polymer partners, chemical resistance, permeation rates, and even to characterize the surface of fillers. Liquids with similar solubility parameter (δ) are miscible, and polymers will dissolve in solvents whose δ is similar to their own value. This behavior is recognized as “like dissolves like”. Based on the description above, CPCs that can be used as liquid/vapor sensor materials should meet the following two requirements: 1) the chosen polymer should be swellable to vapors; 2) the CPCs as sensor materials have to be electrically conductive. Therefore, the relationship between conductive network and vapor sensing behavior of CPCs was investigated from the following aspects: 1) According to the previous studies, CB/polymer composites exhibit poor reversibility in cyclic vapor sensing tests because of the susceptible conductive network formed by CB particles. Thus, there is a need to improve the reversibility and increase the relative resistance change (Rrel) of CPCs. MWCNTs, as 1-dimensional carbon fillers with high aspect ratio, have excellent electrical and mechanical properties. Therefore, a hybrid filler system (MWCNT and CB) was utilized and incorporated in polycarbonate (PC) via melt compounding. PC was selected as the polymer matrix of CPCs because it showed high affinity with many commercial organic solvents/vapors as well as high and fast volume change upon organic solvents/vapors. In order to discuss the effect of conductive network formation on the vapor sensing behavior of PC/MWCNT/CB composites, two MWCNT contents were selected, which were lower and higher than the electrical percolation threshold of the PC/MWCNT composites. In the following, three CB contents were selected for the mixtures with MWCNT. The conductive networks composed of either MWCNT or hybrid CB/MWCNT are compared. The morphology of CPCs with different hybrid filler ratios was observed and investigated using SEM and OM. Moreover, to quantify the vapor sensing behavior of CPCs, some organic solvents were chosen and characterized by Flory-Huggins interaction parameter to demonstrate the polymer-vapor interaction. Afterwards, the cyclic vapor sensing was applied to illustrate the vapor sensing behavior of CPCs with different conductive network formations. 2) At moment, the filler dispersion is still a big challenge for MWCNT filled polymer composites due to the fact that the strong Van der Waals force among nanotubes makes them easily to entangle with each other resulting in the formation of agglomerates. A good filler dispersion state is desirable to achieve CPCs with low φc and. In order to reduce the φc of CPCs, immiscible polymer blend systems are introduced, which can have different blend microstructures by adjusting the polymer component ratios. In the second section, an immiscible polymer blend system based on two amorphous component, namely PC and polystyrene (PS), was chosen aiming to explain the influence of the blend morphology on the sensing performance of CPCs. PC/PS blends with different compositions filled with MWCNT were fabricated by melt mixing. The selective localization of MWCNTs in the blends was predicted using the Young’s equation. Moreover, the composite morphology, filler dispersion, and distribution were characterized by SEM and TEM. In the following, three kinds of CPCs ranging from sea-island structure to co-continuous structure were selected for the cyclic sensing measurement. The relationship between composite microstructure and resulting vapor sensing behavior was evaluated and discussed. 3) The poor reversibility of CPCs towards good solvent vapors is still a problem that hinders the cyclic use of CPC sensor materials. As an important class of polymer, crystalline polymers are rigid and less affected by solvent penetration because of the well-arranged polymer chains. Therefore, the effect of polymer crystallinity on the vapor sensing behavior of CPCs is imperative to be studied. In the third section, poly(lactic acid) (PLA), a semi-crystalline polymer, was selected to melt-mixed with PS and MWCNTs with the aim to improve the sensing reversibility of CPCs towards organic vapors, especially good solvent vapors. Thermal annealing was utilized to tune the PLA crystallinity and the polymer blend microstructure of CPCs. The electrical, morphological, and thermal behavior of CPCs after different thermal annealing times is discussed. In the following, the effect of crystallinity on the vapor sensing behavior of the CPCs was studied in detail. Besides, the different sensing performances of the CPCs towards different vapors resulted from the selective localization of MWCNTs and increased polymer matrix crystallinity were investigated and compared. 4) As discussed for the amorphous polymer blends and crystalline polymer blends and their vapor sensing behavior. The comparison of compact and porous structure of CPCs is going to be studied. In the fourth section, studies to further improve the sensing performance and to find out the exact sensing mechanism of CPCs were performed. Therefore, poly(vinylidene fluoride) (PVDF), a solvent resistive polymer, was chosen to be melt-mixed with PC and MWCNTs. In order to compare the MWCNT dispersion and localization in the blends, three kinds of PCs with different molecular weights were selected; hence, the viscosity ratio of immiscible blends was varied. Rheological, morphological, and electrical properties of CPCs were characterized. After that, the cyclic sensing and long-term immersion tests of CPCs towards different vapors were carried out to evaluate the vapor sensing behavior of compact CPCs with different blend viscosity ratios. Moreover, porous CPC sensors were prepared by extracting the PC component. The same sensing protocols were also applied to these porous sensor materials. The sensing mechanisms between compact CPC sensor and porous CPC sensor were compared and investigated.
28

Development of Ni(CH3-Salen) Conductive Polymer for use in Li-ion Cathodes

O'Meara, Cody A. 06 December 2018 (has links)
No description available.
29

Developing Engineered Thin Films for Applications in Organic Electronic and Photonic Devices.

Nemani, Srinivasa Kartik January 2018 (has links)
No description available.
30

Photo-induced Protonation of Polyaniline Composites and Mechanistic Study of the Degradation of Polychlorinated Biphenyls with Zero-Valent Magnesium

Kirkland, Candace 01 January 2014 (has links)
As technology advances, a need for non-metal, conductive materials has arisen for several types of applications. Lithographic techniques are helpful to develop some of these applications. Such techniques require materials that are insulating and become conductive after irradiated. Composites of polyaniline in its emeraldine base form (PANI-EB) doped with photo-acid generators (PAG) become conductive upon photo-irradiation. This increase in conductivity is due to the protonation of PANI-EB. Such materials may be utilized to fabricate conducting patterns by photo-irradiation; however, the conductivity obtained by direct irradiation of PANI-EB/PAG composites is normally quite low (<10-3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), a proton transfer polymer, was added to PANI-EB/PAG. Results showed the addition of low molecular weight (MW) (550) PEG significantly enhanced the photo-induced conductivity to a level comparable to that of PANI-salt synthesized by oxidizing aniline in the presence of an acid. High MW (8000) PEG is less effective than PEG 550, and composites of PANI-EB and N-PEG-PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo-induced conductivity of the N-PEG-PANI/PANI-EB/PAG composite reached 10-2-10-1 S/cm. Polychlorinated biphenyls (PCBs) are a class of chemicals with 209 different congeners, some of which are known carcinogens, and are persistent organic pollutants in the environment. After its synthesis, it was seen as a phenomenal additive in a multitude of different applications leading to the wide spread use of PCBs and a need for a safe, effective, and inexpensive remediation technique. While it is known that magnesium can degrade PCBs, the mechanism of this reaction was not well-understood. In order for magnesium to be broadly used as a remediation tool, it is necessary to fully understand how the reaction is taking place and if the PCBs are able to be fully dechlorinated into biphenyl. This research focuses on the hydrodechlorination of PCBs with zero-valent magnesium in acidified ethanol. The degradation pathways of 2, 2', 3, 5, 5', 6- hexachlorobiphenyl were investigated to determine the identity of the daughter PCBs produced, how and if they continue to be dechlorinated into biphenyl. The proton source for this hydrodehalogenation reaction was also studied using both deuterated solvent and acid to give more detail to the mechanism of this reaction.

Page generated in 0.0473 seconds