• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 38
  • 24
  • 21
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 222
  • 35
  • 27
  • 23
  • 22
  • 22
  • 22
  • 18
  • 17
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Optical Characterization of Electrochemically Self-Assembled Compound Semiconductor Nanowires

Ramanathan, Sivakumar 01 January 2006 (has links)
Semiconductor nanowires have attracted considerable attention as possible source for lasers and optical storage media. We report the fabrication and optical characterization of ZnO and CdS nanowires. The former are produced by electrochemical deposition of Zn inside nanoporous alumina films containing regimented arrays of 10nm, 25nm and 50 nm diameter pores, followed by room temperature chemical oxidization. Fluorescence spectroscopy shows different characteristics associated with different sample diameter. The 50 nm ZnO nanowires show an exciton recombination peak and an additional peak related to the deep trap levels. 25 nm ZnO nanowires show a only the exciton recombination peak, which is red shifted, possibly due to quantum confined Stark effect associated with built in charges in the alumina. This feature can be exploited to produce light emitting devices whose frequency can be modulated with an external electric field. Such devices could be novel ultra-violet frequency modulators for optical communication and solar blind materials. In addition, we have investigated fluorescence spectra of 10-, 25- and 50-nm diameter CdS nanowires (relative dielectric constant = 5.4) self assembled in a porous alumina matrix (relative dielectric constant = 8-10). The spectra reveal peaks associated with free electron-hole recombination. The 10-nm wire spectra show an additional lower energy peak due to exciton recombination. In spite of dielectric de-confinement caused by the insulator having a higher dielectric constant than the semiconductor, the exciton binding energy increases almost 8-fold from its bulk value in the 10 nm wires. This increase is most likely due to quantum confinement accruing from the fact that the exciton Bohr radius (~5 nm) is comparable to or larger than the wire radius, especially if side depletion is taken into account. Such an increase in the binding energy could be exploited to make efficient room temperature luminescent devices in the visible range.
32

WETTING TRANSITIONS AT NANOSTRUCTURED SURFACES

Seyed, Yazdi Jamileh 12 September 2011 (has links)
Shape of a droplet atop a surface heterogeneity at a nanoscale. Small aqueous droplets on homogeneous surfaces, surrounded by a reservoir of vapor are inherently unstable. In contact with supersaturated vapor, the drops will keep growing until they coalesce and form a contiguous aqueous phase. Alternatively, if vapor pressure is below that of the droplets, the droplets gradually evaporate. Departing from this common picture, when nanoscale droplets sit above hydrophilic patches on a heterogeneous surface, at certain conditions they can maintain a stable volume, determined by the pertinent contact angle and the size of the patches. Only the region under the droplet perimeter controls the contact angle, which in turn determines the drops curvature for given volume and the vapor pressure of the liquid in the drop. The drop size may therefore stop changing when its base just covers the hydrophilic patch. The finite range of water-substrate interactions, however, blurs the patch boundaries hence the nanodrop geometry varies with the patch size in a gradual manner. We use molecular simulations to examine this dependence on graphene-like surfaces with topological heterogeneity as complementing studies of chemical heterogeneity (John Ritchie, Master Thesis, VCU, 2010). We measure the microscopic analogue of the contact angle of aqueous nanodrops above circular hydrophilic or hydrophobic patches of varied size. For both the chemically and topographically heterogeneous surfaces, the results confirm the contact angle of a nanodroplet can be predicted by the local Cassie-Baxter mixing relation applied to the area within the interaction range from the drop’s perimeter, which, in turn, enables predictions of condensation and saturated vapor pressure above nanopatterned hydrophilic/hydrophobic surfaces. Switchable nanowetting dynamics. Understanding the dynamic response of contact angle on switchable hydrophobic-hydrophilic surfaces is key to the design of nanofluidic and optical devices. We use molecular dynamics simulation for water droplets with different number of molecules on a molecularly smooth and corrugated substrate. We monitored the relaxation of the droplet geometry in response to a change in surface hydrophobicity. From the time correlation function for the height of the drop’s center of mass we estimate the rates of relaxation for wetting/dewetting processes following the change between hydrophobic and hydrophilic character of the surface. On molecularly smooth surfaces, we find similar forward/backward rates revealing insignificant hysteresis. Calculations on corrugated surfaces, however, reveal quite different relaxation times for forward (Cassie state to Wenzel state) and reverse processes. The observed hysteresis is associated with different friction forces between the droplet and the surface during advancing and receding processes. We calculate the friction coefficient of the corrugated surface for the forward process following the increase in surface hydrophilicity. We compare continuum hydrodynamic (HD) and molecular kinetic theories (MKT) for calculation of the friction coefficient. Although the small size of our system suggests the use of molecular description of the surface, incorporated in MKT, we obtain essentially equal friction coefficients from both theories. This information indicates an overlap between continuum hydrodynamics and molecular dynamics regimes, with both the HD and MKT theories being applicable at the nanoscopic lengthscales we consider. Water dynamics inside nanospheres. Chemical nature of a spherical confinement has significant effect on dynamics of water molecules outside the cage. In a separate study we examined the effect of chemical nature of the cage on the dynamics of water molecules inside the cage. Calculations have been made for variety of time correlation functions of water in four different sizes of spherical hydrophobic/hydrophilic confinements, Cx x=320, 500, 720, 1500 based “hollow buckyballs”, with different spherical pore diameters. Calculated water hydrogen bond lifetimes, diffusion coefficients and rotational relaxation times in these systems reveal a distinctly different water dynamics compared to interfacial water dynamics outside the cage: interestingly we find insignificant changes in time scales for water dynamics in hydrophilic and hydrophobic carbon cages. Even adding partial charges to hydrophilic confinement did not make a big effect on results compared to hydrophobic case. These findings are suggesting that in highly symmetric confinement water molecules do not care about the type of interaction with the wall because of cancellation of forces in different directions.
33

Ecoulements de fluides complexes dans des canaux sub-microniques / Sub-micron flow of complex fluids

Cuenca, Amandine 09 November 2012 (has links)
Les écoulements de fluides complexes à l’échelle sub-micronique est une problématique rencontrée dans des domaines aussi divers que la récupération assistée du pétrole ou la lubrification des surfaces. Un fluide complexe a des propriétés rhéologiques riches, dues à la présence d’objets déformables en solution, comme les pelotes de polymère. Les phénomènes de surface, comme le glissement jouent un rôle important aux petites échelles. La question de l’effet du confinement sur la rhéologie de solutions de polymères est abordée. Nous caractérisons la taille des objets en solution et la rhéologie volumique des fluides. Grâce au développement d’une technique de photobleaching de fluorescence pour la mesure de vitesse d’écoulement dans des canaux sub-microniques, nous déterminons la viscosité effective des fluides en géométrie confinée. Cette approche expérimentale nous permet de montrer que le confinement induit une diminution de la viscosité effective des fluides. Une mesure directe des vitesses et longueurs de glissement est réalisée en microcanaux par vélocimétrie de particules (micro-PIV). Ces données mettent en évidence une réduction du glissement en géométrie confinée, qui est interprétée en termes de modification du mécanisme de glissement. Une distinction entre le comportement volumique et les phénomènes de surface ne permet plus de rendre compte du comportement du fluide à l’échelle sub-micronique. Une étude préliminaire des écoulements de solutions de tensioactifs à l’échelle sub-micronique est également proposée. / Rheology of high molecular weight polymer solutions at submicroscale is investigated, with a particular emphasis on the wall slip characterization. Our approach is to measure the velocity of a pressure-driven flow in sub-microchannels in order to determine an effective viscosity of fluids. We have been using fluorescence photobleaching as a non-invasive technique to evaluate the velocity of a pressure-driven flow in 175 to 4000 nm high channels. A striking reduction of the effective viscosity is observed with the confinement, as compared to the bulk one. Direct measurement of slip velocity in microchannels is performed, using z-resolved micro-Particle Image Velocimetry (PIV). This study enables to draw two important conclusions, which have never been experimentally demonstrated. Slippage of polymer solutions in the semi-dilute unentangled regime is greatly reduced by confinement. A distinction of bulk and surface phenomena seems no longer valid at the submicroscale. This experimental method is also adapted to the study of surfactant solutions flows at the submicroscale.
34

Evaluation of Microstructural and Mechanical Properties of Multilayered Materials

Subedi, Samikshya 01 February 2017 (has links)
Microstructure controls many physical properties of a material such as strength, ductility, 1density, conductivity, which, in turn, determine the application of these materials. This thesis work focuses on studying microstructural features (such as grain size, shape, defects, orientation gradients) and mechanical properties (such as hardness and yield strength) of multilayered materials that have undergone different loading and/or operating conditions. Two materials that are studied in detail are 18 nm Cu-Nb nanolaminates and 3D printed Inconel 718. Copper-Niobium (Cu-Nb) nanolaminate is a highly stable, high strength, nuclear irradiation resistant composite, which is destabilized with application of high pressure torsion (HPT). This work focuses on understanding the deformation and failure behavior of Cu-Nb using a novel orientation mapping technique in transmission electron microscopy in (TEM) called Automated Crystal Orientation Mapping (ACOM) and Digistar (ASTARTM) or Precession Electron Diffraction (PED). A new theory is postulated to explain strengthening mechanisms at the nanoscale using a data analytics approach. In-situ TEM compression and tensile testing is performed to image dislocation movement with the application of strain. This experiment was performed by Dr. Lakshmi Narayan Ramasubramanian at Xi’an Jiaotong University in China. Another major aspect of this research focuses on the design, fabrication, and microstructural characterization of 3D printed Inconel 718 heat exchangers. Various heat exchanger designs, machine resolution, printing techniques such as build orientation, power, and velocity of the laser beam are explored. Microstructural and mechanical properties of printed parts (before and after heat treatment) are then analyzed to check consistency in grain size, shape, porosity, hardness in relation to build height, scan parameters, and design. Various tools have been utilized such as scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), x-ray computed microtomography (at Advanced Photon Source at Argonne National Lab), hardness and micro-pillar compression testing for this study.
35

The role of water properties and specific ion effects on the evolution of silica nanoconfinement / Le rôle des propriétés de l'eau et des effets spécifiques des ions sur l'évolution du nanoconfinement de la silice

Baum, Markus 09 November 2018 (has links)
Dans cette thèse, les propriétés de l'eau en présence d'ions dans des nanoconfinement à base de silice ont été étudiées. L'objectif principal est de relier ces propriétés à l'évolution des matériaux mésoporeux de silice dans les solutions aqueuses. Pour atteindre cet objectif, nous avons utilisé une approche originale consistant à remplir avec des solutions électrolytiques comportant des ions ayant des propriétés kosmotropes différentes, XCl2 (X = Ba, Ca, Mg) des systèmes modèles tels que deux surfaces de silice parallèles et planes espacées de 3 et 5 nm (nanocanaux) et des silices à mesoporosité ordonnée comme les silices SBA-15 (6 nm de taille pores et murs des pores microporeux) et MCM-41 (3 nm de taille de pores et murs des pores denses).Les résultats obtenus indiquent que la cinétique de remplissage des nanocanaux dépend de la taille du confinement, de la nature des ions et de la solubilité des sels associés aux électrolytes. Dans certains cas, le remplissage incomplet des nanocanaux peut s'expliquer par une diminution de la dynamique de l'eau associée à l’atteinte de la saturation vis-à-vis des sels XCl2 dans la couche interfaciale. La possible précipitation de phases XCl2 pourrait permettre d’expliquer le bouchage de certains nanocanaux. Par la suite, les propriétés de l'eau dans des nanoconfinement concave de silice tels que les cylindres ont également été étudiées. La structure de l’eau en présence d’ions et sa dynamique à l’échelle de la picoseconde caractérisées respectivement par FTIR-ATR et diffusion quasi élastique des neutrons, ont été analysées. Les résultats suggèrent que les propriétés structurales et dynamiques de l'eau sont fortement influencées par la taille du confinement, le caractère kosmotrope des ions et l'excès d'ions dans la couche interfaciale.Enfin, nous avons déterminé l’évolution des deux silices mésoporeuses dans des solutions électrolytiques par diffusion des rayons X aux petits angles. Pour une taille de pore de 3 nm et des murs de pores denses (MCM-41), une dynamique de l’eau lente à une échelle picoseconde conduit probablement à une sursaturation des ions dans la couche interfaciale et donc à une reprécipitation des sels XCl2 et / ou de la silice plus stable. Dans ce cas, l'évolution du MCM-41 est induite par un processus de dissolution-recondensation / précipitation. Dans les plus grands mésopores du SBA-15, en raison de la microporosité dans la paroi des pores, le processus d'altération est différent. Dès le début, une couche d'altération se forme et la taille des pores augmente jusqu'à saturation de la silice. Par la suite, un processus de recondensation / précipitation similaire à celui observé dans la MCM-41 se produit dans la microporosité. Ces deux types d'évolutions en silice pourraient persister jusqu'à l'obtention d'une phase de silice thermodynamiquement stable. / In this study, we investigated the water properties in the presence of ions in silica nanoconfinement. The main objective is to relate these water properties to the evolution of silica mesoporous materials in aqueous solutions. To reach this goal, we used an original approach, consisting in the use of electrolyte solutions having ions with various kosmotropic property XCl2 (X = Ba, Ca, Mg) confined in model systems such as two parallel and plane silica surfaces spaced of 3 and 5 nm (nanochannels) and highly ordered mesoporous silica materials represented by SBA-15 (6 nm pore size and microporous pore wall) and MCM-41 (3 nm pore size and dense pore wall).The obtained results indicate that the filling kinetics in nanochannels is driven by the size of the confinement, the nature of ions and the salt solubility of electrolytes. In some cases, the incomplete filling of the nanochannels may be explained by a decrease of water dynamics associated to the saturation of XCl2 salts into the interfacial layer. The possible precipitation of XCl2 phases may explain an incomplete filling by a nanochannels clogging.Thereafter, the water properties in nanoconfinement made of silica concave surface such as cylinders were studied. The water structure and dynamics at a picosecond scale in presence of ions were respecteively characterized by infrared spectroscopy and quasi-elastic neutron scattering. The results suggest that the structural and dynamical water properties are strongly affected by the size of the confinement, the kosmotropic properties of ions and the surface ion excess in the interfacial layer.Finally, we characterized the evolution of the two mesoporous silica in electrolyte solutions using in-situ small-angle X-ray scattering. For 3 nm pore size and dense pore wall (MCM-41), the slow dynamics at a picosecond scale probably lead to a supersaturation of ions in the interfacial layer and thus, to a reprecipitation of XCl2 salts and/or silica phases. In that case, the evolution of the MCM-41 is driven by a dissolution-recondesation/precipitation process. In the bigger mesopores of SBA-15, due to the microporosity in the pore wall, the alteration process is different. During a first stage, an alteration layer is formed and the pore size increases until the silica saturation. Afterwards, a similar recondensation/precipitation process as observed in MCM-41 occurs into the microporosity. These two types silica evolutions could persist until the formation of a thermodynamic stable silica phase.
36

Nanotubes d’imogolite et propriétés de l’eau confinée : organisation, structure et dynamique / Imogolite nanotubes and properties of confined water : organization, structure and dynamics

Amara, Mohamed Salah 15 December 2014 (has links)
Ce travail de thèse concerne l'étude des propriétés structurales et de confinement des nanotubes inorganiques d’imogolite. Ces nanotubes d’alumino-silicate et/ou germanate existent sous forme mono- et double-parois avec des diamètres de l’ordre du nanomètre. Nous avons étudié la synthèse de ces nanotubes et le contrôle de leur organisation, leur structure et leur déformation, ainsi que les propriétés de l’eau confinée.Dans les deux premiers chapitres, nous présentons un état de l’art sur les nanotubes d’imogolite et les différentes méthodes expérimentales utilisées. Dans le troisième chapitre, dédié à la synthèse des nanotubes et aux propriétés de nanotubes hybrides, nous présentons une nouvelle méthode de synthèse qui permet d’augmenter d’un ordre de grandeur la longueur des nanotubes double-parois et nous démontrons l’affinité du bromopropanol, une molécule organique, avec des nanotubes hybrides méthylés.Dans le chapitre suivant, nous nous focalisons sur la détermination de la structure atomique des différents nanotubes d’imogolite, naturels et synthétiques, à base de silicium ou de germanium, mono- et double-parois. Les résultats issus des modèles de minimisation géométrique développés sont confrontés, avec succès, à ceux de diffusion des rayons X expérimentaux aux petits et aux grands angles. Le contrôle de l’auto-organisation des nanotubes en poudre est présenté dans le cinquième chapitre. On y analyse de plus la déformation de la base des nanotubes selon leur état d’auto-organisation.Dans le dernier chapitre, nous décrivons le phénomène de déshydratation des imogolites. En combinant les résultats de diffusion des rayons X et de diffusion inélastique des neutrons, nous proposons la séquence de déshydratation suivante : eau externe ‒ eau confinée au centre de tubes ‒ eau liée. Ces deux derniers types d’eau présentent des caractéristiques spécifiques au niveau des modes de translation et de libration. / This work is dedicated to the study of the structure and to the confinement properties of water in imogolite nanotubes. These aluminosilicate (germanate) inorganic nanotubes exist as single (SW) and double-walled (DW) nanotubes with diameters in the nanometer range. This study concerns the synthesis of imogolite nanotubes, the control of their self-assembling, their structure and deformation, and the properties of confined water.In the first two chapters, we present the state of art on the subject and we describe the different experimental methods used in this work. The third chapter is dedicated to the synthesis of the nanotubes and the properties of hybrid nanotubes. We first present a new method of synthesis allowing the increase of an order of magnitude of the length of double-walled nanotubes; secondly, we demonstrate the affinity of the organic molecule bromopropanol with the methylated hybrid nanotubes.Next chapter focuses on the determination of the atomic structure of different types of imogolite: natural and synthetic, silicon or germanium-based, SW and DW. Results are obtained from computational models based on a geometrical structure minimization, in agreement with the results of small- and wide-angle X-Ray scattering experiments.In the next chapter, we explain how to control the self-assembling and organization of imogolites in powder. Moreover, we analyze the shape deformation of the nanotubes according to their organization.In the last chapter, we describe the behavior of confined water molecules in the imogolite powder as a function of temperature. By combining X-Ray and inelastic neutron scattering techniques, we propose the following sequence for dehydration: external water ‒ confined water in the tube center ‒ bounded water. Dynamical properties of confined and bounded waters are found to be drastically different.
37

Estudo dielétrico da interação da água com substâncias hidrofílicas em baixas temperaturas / Dielectric study of water near hydrophilic surfaces at low temperatures

Moreira, Maria Rejane 29 September 2014 (has links)
O propósito deste trabalho é aumentar o conhecimento existente sobre as interações dielétricas da água confinada em materiais hidrofílicos, no regime de baixas temperaturas. Os materiais hidrofílicos (sílica gel, gesso, colágeno e álcool polivinílico - PVA) foram analisados com os recursos disponíveis na técnica de Espectroscopia de Impedância - permissividade dielétrica e impedância elétrica. Como objetivo especifico procurou-se estabelecer experimentalmente o papel das ligações hidrogênio nos processos de condução observados na água confinada e verificar a existência da transição dinâmica da água super-resfriada em T = -45ºC (228K). As substâncias examinadas possuem redes ou cadeias moleculares, com grupos polares superficiais capazes de se ligarem às moléculas de água por meio de ligações hidrogênio. Em espaços restritos de natureza hidrofílica, a água pode ser super-resfriada além do ponto de nucleação homogênea, permanecendo líquida para temperaturas inferiores a 0ºC. O entendimento de sistemas envolvendo materiais hidrofílicos - tais como sólidos, géis e macromoléculas - e a água, contribui para o desenvolvimento de novos materiais e para o entendimento dos sistemas vivos. De acordo com os resultados obtidos a condução dos íons na água confinada se dá por meio da rede formada, via ligações hidrogênio, entre as moléculas de água e a cadeia dos materiais. O espectro elétrico dos materiais estudados exibe dois processos de condução, comuns a todas as substâncias. O primeiro, é influenciado pelo nível de hidratação das amostras e está relacionado as moléculas de água distantes das superfícies. O segundo, é próprio da água confinada e possui tempos de relaxação elétricos com transições observadas em -60ºC (210K) na sílica gel, e -45ºC nos outros materiais. Também constatou-se que o tamanho da cadeia polimérica do PVA altera a dinâmica do confinamento de água: cadeias de menor peso molecular não são capazes de gerar sítios que propiciem o confinamento da água. / This work aims to increase the existing knowledge on the dielectric interactions of water confined in hydrophilic materials at low temperatures. The hydrophilic materials (silica gel, gypsum, collagen and polyvinyl alcohol - PVA) were studied with the available functions of Impedance Spectroscopy - dielectric permittivity and electrical impedance. The specific goal of this thesis is to establish the role of hydrogen bonds in the conduction processes observed in confined water and to verify the existence of the supercooled water dynamic crossover at T = -45 ºC (228K). The chosen substances have molecular chains or networks with polar surface groups connected to water molecules through hydrogen bonds. When confined in small geometries, water does not crystallize and can be supercooled bellow its homogeneous nucleation temperature. This allows the indirect investigation of supercooled confined water. The studies of systems involving hydrophilic materials - such as solids, gels and macromolecules - and water, contributes to the development of new materials and to the understanding of living systems. This study demonstrated that the conduction in the confined water occurs through the network formed by hydrogen bonds between water molecules and the chain materials. The impedance spectra of all material exhibits two conduction processes common to all the analyzed samples. While the level of hydration of the samples can influence the process of higher frequencies, the one found in lower frequencies is independent of the amount of water in the samples. The first was associated to bulk water molecules and the second is related to confined water and show the expected dynamic crossover. In addition, the size of the PVA polymeric chain alters the dynamics of water: lower molecular weight polymers are not capable of displaying the supercooled dynamic crossover.
38

Water Behavior in hydrophobic porous materials. Comparison between Silicalite and Dealuminated Zeolite Y by Molecular Dynamic Simulations.

Fleys, Matthieu Simon 05 December 2003 (has links)
"Water behavior in pure silicalite and Dealuminated Zeolite Y (DAY), two highly hydrophobic zeolites, was investigated at different temperatures in the range 100-600 K by molecular dynamics simulations. The Compass forcefield was used to carry out the study. A full flexibility of water molecules and of the zeolite framework was considered. The results show that water behavior is more complex in silicalite than in zeolite DAY. Three different activation energies for water diffusion were obtained in silicalite in the range 250-600 K compared to two for DAY. The values of these activation energies are discussed in detail and are related to the hydrogen bond‘s strength and the zeolite structure. Moreover, from the radial distribution functions (rdfs), it is shown that water mostly exists in the gas phase at room temperature in silicalite whereas liquid water is observed in DAY in agreement with previous experimental observations. The self-diffusion coefficients of water and the rdfs are obtained as a function of temperature in order to explain the behavior differences of water in the two all-silica zeolites. The loading influence on the self-diffusion coefficients is also investigated for both crystals. The results are compared with previous experimental and theoretical studies."
39

Gás de Bose diluído fracamente confinado / Dilute Bose gas weakly confined.

Alejo Martinez, Harley 24 September 2018 (has links)
Orientador: Guillermo Gerardo Cabrera Oyarzun / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T17:47:25Z (GMT). No. of bitstreams: 1 AlejoMartinez_Harley_M.pdf: 11932489 bytes, checksum: f245a8fe554158b8ad494f6d80441a06 (MD5) Previous issue date: 2010 / Resumo: Esta dissertação tem como objetivo apresentar um estudo crítico dos condensados atômicos de Bose-Einstein (BEC). Tomando como ponto de partida a física do gás livre, estudamos o efeito de potenciais fracamente confinantes. Dois casos foram estudados em detalhe: i) um gás atômico em um poço de potencial quadrado finito com poucos estados ligados; e ii) um sistema confinado em duas dimensões por um potencial oscilador harmônico isotrópico, sendo fracamente confinado na terceira dimensão. Para o primeiro exemplo, estudamos as propriedades termodinâmicas, comparândo-as com a transição de fase do gás livre, Interações entre bósons são introduzidas segundo a teoria de Bogoliubov para tratar interações elásticas de dois corpos. Dentro da aproximação de campo médio, as propriedades do condensado são descritas por uma função de onda macroscópica, que satisfaz a equação de Gross-Pitaevskii (GP). Analisamos os efeitos de comprimentos de espalhamento de onda 5, atrativos e negativos, para BEC aprisionados no poço de potencial finito, onde o sistema suporta excitações quânticas coerentes não-lineares. Soluções numéricas, para a equação GP independente do tempo, foram encontradas para a função de onda do estado condensado a temperatura zero, bem como para as suas excitações elementares não lineares. Para analisar os resultados, usamos valores realistas de parâmetros para os gases atômicos atualmente estudados experimentalmente. Para o segundo caso mencionado acima, desenvolvemos um programa destinado ao estudo de não-linearidades mais gerais. A física não é restrita só ao BEC, alguns sistemas de interesse são modelados por famílias de equações de Schrõdinger não-lineares, sendo a equação GP um caso particular. Para um potencial harmônico, apesar da não-linearidade, uma vez que uma solução é conhecida, muitas outras soluções podem ser construídas por uma translação espacial do centro do pacote de onda. O método é testado analiticamente no limite da equação de Schrõdinger linear com um potencial de oscilador harmônico em duas dimensões. As soluções são obtidas através de uma superposição de soluções estacionárias construídas por deslocamentos espaciais de uma solução exata. O método pode ser estendido para o regime de não-linearidades fracas, e tem uma aplicação direta na geração de estados vórtice em BEC / Abstract: A critical study of atomic Bose-Einstein condensates (BECs) is presented. Taking as a starting point the physics of the free gas, we study the effect of weakly confining potentials. Two cases were studied in detail: i) an atomic gas in a finite square well potential with a few bound states; and ii) a system confined in two-dimensions by an isotropic harmonic oscillator potential, while being weakly confined in the third dimension. For the first example, we study the thermodynamic properties, comparing with the phase transition of the free gas. Interactions between bosons are introduced following Bogoliubov' s approach to treat two-body elastic interactions. Within the mean field approximation, the properties of the condensate are described by a macroscopic wave function, which satisfies the Gross-Pitaevskii equation (GPE). We analyze the effects of both, positive and negative s-wave scattering lengths for BEC trapped in a finite well, where the system supports quantum nonlinear coherent excitations. Numerical solutions for the time-independent GPE have been found for the condensate wave function at zero temperature, as well as for its nonlinear elementary excitations. To analyze the results, we use realistic values of pararneters for atomic gases currently been studied experimentally. For the second case mentioned above, we develop a program aimed at the study of more general nonlinearities. The physics is not restricted only to BEC, and the systems of interest are modeled by families of non-linear Schödinger equations, being the GPE a particular case. For the harmonic potential, in spite of the nonlinearities, once a solution is known, many other solutions can be constructed by spatial translations of the center of the wave packet. The method is probed analytically in the limit of the linear Schödinger. equation with a harmonic oscillator potential in two dimensions. Solutions are obtained through a superposition of stationary solutions built fIam spatial displacements of an exact solution. The method can be extended to the regime of weak nonlinearities, and has a direct application in generating vortex states in BEC / Mestrado / Física da Matéria Condensada / Mestre em Física
40

Hydrogeology and Hydrochemistry of the East-Central Portion of The Salt Lake Valley, Utah, as Applied to Wellhead Protection in a Confined To Semiconfined Aquifer

Gadt, Jeff W. 01 May 1994 (has links)
The Safe Drinking Water Act includes provisions for state wellhead protection programs which address wellhead protection areas. In Utah, these areas are called drinking water source protection (DWSP) zones. Zones Two and Three are delineated according to analytical or numerical techniques, which are based on hydrogeological and time-of-travel data, as well as recharge information, accumulated through the use of hydrogeologic and hydrochemical techniques. The primary conclusions of this research are: 1) A fence diagram and site hydrostratigraphic diagram show that the hydrogeology is more complex than previously has been thought . The principal aquifer at the target well site comprises a sequence of mostly coarse-grained units interspersed with thinner fine-grained units. The supposedly unconfined shallow aquifer is confined in most parts of the valley, including the target well site. 2) The recovery rate of water levels in the monitor wells in response to pumping of the target well indicates that horizontal groundwater flow velocities are low at the target well site. X 3) Interpretation of major ions relative to the depth of uppermost open interval of the various sample wells indicates that the deeper of the three major water-bearing zones (below 300 to 350 feet [91 to 107 meters]) is not well connected to the upper two zones. 4) The chemical evolution of the water along the westernmost of three discrete flowpaths indicates a change from young calcium bicarbonate water to moderately mature sodium-sulfate water. 5) Sample waters recharged from the northern Wasatch Mountains have higher total-dissolved-solids (TDS) contents then sample waters recharged from the southern Wasatch Mountains . 6) The discrepancy between many of the δ18O, δD, and tritium data as to the probable recharge area(s) indicate that the sample wells must be evaluated on an individual basis regarding the source of recharge water. 7) The tritium data demonstrate that those wells located farthest out into the valley or having the deepest uppermost open interval furnish the lowest tritium values. 8) Based on the 14C dating technique , the groundwater at the target well site appears to be between 1300 and 5300 years old. 9) There is little risk of contamination at the target well site, in terns of the 15-year time-of-travel DWSP zone (Zone 3).

Page generated in 0.0353 seconds