Spelling suggestions: "subject:"conformal"" "subject:"nonformal""
351 |
Threelogy in two parts 3-algebras in BLG models and a study of TMG solutionsRitter, Patricia Diana January 2012 (has links)
This thesis is a review of research done over the course of the past 4 years, divided into two unrelated parts. The rst is set in the context of Bagger-Lambert-Gustavsson models, based on 3-Lie algebras. In particular I will describe theories with metric 3-algebras of inde nite signature: these present elds with negative kinetic terms. The problem can be solved by gaugeing away the non-physical degrees of freedom, to obtain other well understood theories. I will show how this procedure can be easily applied for 3-algebra metrics of any inde nite signature. Part II of this thesis focuses on solutions of topologically massive gravity (TMG): particular attention is devoted to warped AdS3 black holes, which are discussed in great detail. I will present a novel analysis of the near horizon geometries of these solutions. I further propose an approach for searching for new solutions to 3-dimensional gravity based on conformal symmetry. This approach is able to yield most of the known axisymmetric stationary TMG backgrounds.
|
352 |
Invariants asymptotiques en géométrie conforme et géométrie CR / Asymptotic invariants in conformal and CR geometryMichel, Benoît 08 November 2010 (has links)
Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green de l'opérateur de Yamabe CR au voisinage de sa singularité,dans le cas CR sphérique, et en dimension 3 dans une carte CR-normale au sens de Jerison et Lee, lorsque la constante de Yamabe-CR est strictement positive. Nous montrons la covariance pseudo-conforme du terme constant sous les changements de cartes respectivement CR-sphériques et CR-normales.La troisième partie donne une explication formelle à une annulation algébrique sur laquelle repose la définition de plusieurs invariants à l'infini de type masse ADM, qui n'avait pu jusqu'à présent qu'être constatée par un calcul direct. / In this thesis we study the use of some asymptotic invariants in conformal and CR geometry.The first chapter is devoted to conformal geometry. We compute an asymptotic expansion ofthe Green function of GJMS operators near the diagonal, for a normal conformal factorin the sense of Lee and Parker. We show that the constant term in this expansion is covariant through achange of normal conformal factor. We relate it to an invariant at infinity of the type of the ADM massof a non-compact metric obtained by some kind of stereographic projection.In the second chapter we study CR geometry. We compute the first terms of the asymptotic expansion of the Greenfunction of the Yamabe-CR operator near its singularity, when the Yamabe-CR constant is positive, in the CR-sphericalcase, and in dimension 3 in a CR-normal chart in the sense of Jerison and Lee.We show the pseudo-conformal covariance of the constant term in this asymptotic expansion through a change of spherical chart andof CR-normal chart respectively.In the third chapter we give a formal explanation to an algebraic cancellationon which the defintion of some invariants at infinity such as the ADM mass relies.
|
353 |
Knowledge-based IMRT treatment planning for prostate cancer.Chanyavanich, V, Das, SK, Lee, WR, Lo, JY 05 1900 (has links)
PURPOSE: To demonstrate the feasibility of using a knowledge base of prior treatment plans to generate new prostate intensity modulated radiation therapy (IMRT) plans. Each new case would be matched against others in the knowledge base. Once the best match is identified, that clinically approved plan is used to generate the new plan. METHODS: A database of 100 prostate IMRT treatment plans was assembled into an information-theoretic system. An algorithm based on mutual information was implemented to identify similar patient cases by matching 2D beam's eye view projections of contours. Ten randomly selected query cases were each matched with the most similar case from the database of prior clinically approved plans. Treatment parameters from the matched case were used to develop new treatment plans. A comparison of the differences in the dose-volume histograms between the new and the original treatment plans were analyzed. RESULTS: On average, the new knowledge-based plan is capable of achieving very comparable planning target volume coverage as the original plan, to within 2% as evaluated for D98, D95, and D1. Similarly, the dose to the rectum and dose to the bladder are also comparable to the original plan. For the rectum, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are 1.8% +/- 8.5%, -2.5% +/- 13.9%, and -13.9% +/- 23.6%, respectively. For the bladder, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are -5.9% +/- 10.8%, -12.2% +/- 14.6%, and -24.9% +/- 21.2%, respectively. A negative percentage difference indicates that the new plan has greater dose sparing as compared to the original plan. CONCLUSIONS: The authors demonstrate a knowledge-based approach of using prior clinically approved treatment plans to generate clinically acceptable treatment plans of high quality. This semiautomated approach has the potential to improve the efficiency of the treatment planning process while ensuring that high quality plans are developed. / Dissertation
|
354 |
Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade e o papel do limite N -> infinito na dinâmica dos zeros de Lee-Yang / Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality and the role of the N -> infinity limit for the Lee-Yang zeros´s dynamicsConti, William Remo Pedroso 11 June 2008 (has links)
Neste trabalho estabelecemos o Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade via equação a derivadas parciais no limite N -> infinito. Por simplicidade consideramos apenas o caso d = 4, sendo o teorema também válido para d > 4. Pelo estudo de uma dada equação a derivadas parciais (EDP) determinamos a temperatura inversa crítica do modelo esférico hierárquico contínuo para um d > 2 qualquer, havendo conexão entre criticalidade e o ponto fixo da EDP. Por meio de uma análise geométrica da trajetória crítica obtemos informações sobre a dinâmica e distribuição dos zeros de Lee-Yang. / In this work we stablish the Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality via partial differential equation in the limit N -> infinity. For simplicity we only treat the d = 4 case but the theorem is still valid for d > 4. By studying a given partial differential equation (PDE) we determine for any d > 2 the critical inverse temperature of the continuum hierarchical spherical model, and we show a connection between criticality and the fixed point of PDE. By means of a geometric analysis of the critical trajectory we obtain some informations about Lee-Yang zeros´s dynamics and distribution.
|
355 |
Applications of the Extremal Functional Bootstrap / Aplicações do Bootstrap Funcional ExtremoMeinke, Alexander 13 November 2018 (has links)
The study of conformal symmetry is motivated through an example in statistical mechanics and then rigorously developed in quantum field theories in general spatial dimensions. In particular, primary fields are introduced as the fundamental objects of such theories and then studied in the formalism of radial quantization. The implications of conformal invariance on the functional form of correlation functions are studied in detail. Conformal blocks are defined and various approaches to their analytical and numerical calculation are presented with a special emphasis on the one-dimensional case. Building on these preliminaries, a modern formulation of the conformal bootstrap program and its various extensions are discussed. Examples are given in which bounds on the scaling dimensions in a one-dimensional theory are derived numerically. Using these results I motivate the technique of using the extremal functional bootstrap which I then develop in more detail. Many technical details are discussed and examples shown. After a brief discussion of conformal field theories with a boundary I apply numerical methods to find constraints on the spectrum of the 3D Ising model. Another application is presented in which I study the 4-point function on the boundary of a particular theory in Anti-de-Sitter space in order to approximate the mass spectrum of the theory. / O estudo da simetria conforme é motivado através de um exemplo em mecânica estatística e em seguida rigorosamente desenvolvido em teorias de campos quânticos em dimensões espaciais gerais. Em particular, os campos primários são introduzidos como os objetos fundamentais de tais teorias e então estudados através do formalismo de quantização radial. As implicações da invariância conforme na forma funcional das funções de correlação são estudadas em detalhe. Blocos conformes são definidos e várias abordagens para seu cálculo analítico e numérico são apresentadas com uma ênfase especial no caso unidimensional. Com base nessas preliminares, uma formulação moderna do programa de bootstrap conforme e suas várias extensões são discutidas. Exemplos são dados em que limites nas dimensões de escala em uma teoria unidimensional são derivados numericamente. Usando esses resultados, motivei a técnica de usar o bootstrap funcional extremo, que depois desenvolvo em mais detalhes. Diversos detalhes técnicos são discutidos e exemplos são apresentados. Após uma breve discussão das teorias de campo conformes com fronteiras, eu aplico métodos numéricos para encontrar restrições no espectro do modelo de Ising em 3D. Outra aplicação é apresentada em que eu estudo a função de 4 pontos na fronteira de uma teoria particular no espaço Anti-de-Sitter, a fim de aproximar o espectro de massa da teoria.
|
356 |
BPS approaches to anyons, quantum Hall states and quantum gravityTurner, Carl Peter January 2017 (has links)
We study three types of theories, using supersymmetry and ideas from string theory as tools to gain understanding of systems of more general interest. Firstly, we introduce non-relativistic Chern-Simons-matter field theories in three dimensions and study their anyonic spectrum in a conformal phase. These theories have supersymmetric completions, which in the non-relativistic case suffices to protect certain would-be BPS quantities from corrections. This allows us to compute one-loop exact anomalous dimensions of various bound states of non-Abelian anyons, analyse some interesting unitarity bound violations, and test some recently proposed bosonization dualities. Secondly, we turn on a chemical potential and break conformal invariance, putting the theory into the regime of the Fractional Quantum Hall Effect (FQHE). This is illustrated in detail: the theory supports would-be BPS vortices which model the electrons of the FQHE, and they form bag-like states with the appropriate filling fractions, Hall conductivities, and anyonic excitations. This formalism makes possible some novel explicit computations: an analytic calculation of the anyonic phases experienced by Abelian quasiholes; analytic relationships to the boundary Wess-Zumino-Witten model; and derivations of a wide class of QHE wavefunctions from a bulk field theory. We also further test the three-dimensional bosonization dualities in this new setting. Along the way, we accumulate new descriptions of the QHE. Finally, we turn away from flat space and investigate a problem in (3+1)-dimensional quantum gravity. We find that even as an effective theory, the theory has enough structure to suggest the inclusion of certain gravitational instantons in the path integral. An explicit computation in a minimally supersymmetric case illustrates the principles at work, and highlights the role of a hitherto unidentified scale in quantum gravity. It also is an interesting result in itself: a non-perturbative quantum instability of a flat supersymmetric Kaluza-Klein compactification.
|
357 |
Bornes sur des valeurs propres et métriques extrémales / Eigenvalue bounds and extremal metricsPetrides, Romain 17 November 2015 (has links)
Cette thèse est consacrée à l'étude des valeurs propres de l'opérateur de Laplace et de l'opérateur de Steklov sur des variétés riemanniennes. On cherche à donner des bornes optimales parmi l'ensemble des métriques, dans une classe conforme donnée ou non, et à caractériser, si elles existent, les métriques qui atteignent ces bornes. Ces métriques extrémales ont des propriétés qui s'inscrivent dans la théorie des surfaces minimales. On s'intéresse d'abord à la borne supérieure des valeurs propres de Laplace parmi des métriques conformes entre elles, appelées valeurs propres conformes. Dans le chapitre 1, on estime la deuxième valeur propre conforme de la sphère standard. Dans les chapitres 2 et 3, on montre que la première valeur propre conforme d'une variété riemannienne est plus grande que celle de la sphère standard de même dimension avec égalité seulement pour la sphère standard. Ensuite, on cherche à démontrer l'existence et la régularité de métriques qui maximisent les valeurs propres sur des surfaces, dans une classe conforme donnée ou non. Dans les chapitres 3 et 4, on démontre un résultat d'existence pour les valeurs propres de Laplace. Dans le chapitre 6, le travail est fait pour les valeurs propres de Steklov. Enfin, dans le chapitre 5, fruit d'un travail réalisé en collaboration avec Paul Laurain, on démontre un résultat de régularité et de quantification des applications harmoniques à bord libre sur une surface Riemannienne. C'est un élément clé pour le chapitre 6 / This thesis is devoted to the study of the Laplace eigenvalues and the Steklov eigenvalues on Riemannian manifolds. We look for optimal bounds among the set of metrics, lying in a conformal class or not. We also characterize, if they exist the metrics which reach these bounds. These extremal metrics have properties from the theory of minimal surfaces. First, we are interested in the upper bound of Laplace eigenvalues in a class of conformal metrics, called the conformal eigenvalues. In Chapter 1, we estimate the second conformal eigenvalue of the standard sphere. In Chapters 2 and 3, we prove that the first conformal eigenvalue of a Riemannian manifold is greater than the one of the standard sphere of same dimension, with equality only for the standard sphere. Then, we look for existence and regularity results for metrics which maximize eigenvalues on surfaces, in a given conformal class or not. In Chapters 3 and 4, we prove an existence result for Laplace eigenvalues. In Chapter 6, the work is done for Steklov eigenvalues. Finally, in Chapter 5, obtained in collaboration with Paul Laurain, we prove a regularity and quantification result for harmonic maps with free boundary on a Riemannian surface. It is a key component for Chapter 6
|
358 |
Effets de la deuxième orbitale dans les systèmes unidimensionnels de fermions alcalino-terreux ultrafroids / Study of cold fermionic alkaline earth atoms in one dimensionBois, Valentin 28 March 2017 (has links)
La réalisation expérimentale de la condensation de Bose-Einstein (BEC) a ouvert un nouveau champ d'investigation très fertile dans l'étude des atomes froids. En particulier, la possibilité de synthétiser des gaz de fermions piégés dans des réseaux optiques représente un développement de la plus haute importance pour la physique de la matière condensée. Ceci ouvre notamment sur la perspective d'étudier des phases quantiques exotiques stabilisées dans des systèmes d'électrons fortement corrélés.Récemment, les gaz atomiques d'alcalino-terreux ou d'ytterbium ont suscité un vif intérêt et ont été refroidis jusqu'à la dégénérescence quantique. La structure atomique particulière de ces systèmes leur confère de très hauts degrés de symétrie, grâce au découplage entre le spin nucléaire et le moment angulaire électronique. Une physique exotique conduisant à de multiple applications peut résulter de ces systèmes de hautes symétries qui ne peut être sondée que par les solides bases de la matière condensée.Dans cette thèse, on se propose d'étudier les propriétés physiques de basse énergie d'un gaz de fermions de type alcalino-terreux, piégé dans un réseau optique à une dimension. À une dimension, il est possible d'analyser les effets des interactions de manière non-perturbative par des approches de théorie des champs comme la bosonisation ou la théorie des champs conformes, et numériquement par le groupe de renormalisation de la matrice densité (DMRG). L'ensemble de ces outils sera notamment utilisé pour déterminer le diagramme de phase des gaz de fermions d'alcalino-terreux ou d'ytterbium à une dimension. / Experimental realization of Bose-Einstein condensate (BEC) opened a new and rich field of investigation for the study of the cold atoms. In particular, the possibility of creating trapped fermionic gases in optical lattices represent one of the most important development for the condensed matter physics. This open the outlook of studying exotic and stabilized quantum phases in strongly correlated systems of electrons.Recently, alkline-earth or ytterbuim atomic gases have given rise to great interest and have been cooled down up to quantum degenaracy. The specific atomic structure of these systems confer them very high degrees of symetry, thanks to the decoupling beetwin the nuclear spin and the electronic angular momentum. An exotic physics which is only probe thanks to the strong fundament of the condensed matter.In this thesis, we propose to study the physical properties at low energy of a alkaline-earth-like fermionic gas, trapped in a one dimensional optical lattice. In one dimension, we are able to analyse effects of interactions in a non-pertubative way with conformal field theory or bosonization, and numerically with Density Matrix Renormalization Group (DMRG) approach. All of these tools will be used to provide the phase diagram of these alkaline-earth-like fermionic gases in one dimension.
|
359 |
Vizualizace černoděrových prostoročasů / Visualization of black hole spacetimesMaixner, Michal January 2018 (has links)
This work is focused on visualisation of Schwarzschild, Reissner- Nordström and Kerr black hole. The two-dimensional conformal diagram was constructed. In the case of Kerr black hole, the causal structure was visualized by intersection of chronological future of given point in spacetime with hyper- surfaces of constant value of Boyer-Lindquist coordinate t. Conformal diagram for Kerr black hole was constructed only in the neighbourhood of outer event horizon. Then the causal diagram, which is analogous to conformal diagram for Reissner-Nordström black hole was constructed. In all cases two-dimensional spa- celike hypersurfaces were chosen that were embedded into Euclidean space. The interpretation of time evolution of black hole universe was given to a sequence of such embedded hypersurfaces. In the case of Kerr black hole the embedding of outer ergosphere and outer event horizon were also constructed. 1
|
360 |
Medidas DLR e transições de fase tipo volume em shifts de Markov com alfabeto enumerável / DLR Measures and Volume-Type Phase Transitions in Markov shifts with Enumerable AlphabetBeltrán, Elmer Rusbert Calderón 29 March 2019 (has links)
Introduzimos a extensão natural da definição de medida DLR para medidas sigma-finitas em shift de Markov com alfabeto enumerável. Provamos que o conjunto de medidas DLR contém o conjunto de medidas conformes associadas aos potenciais satisfazendo a condição de Walters. No caso BIP ou quando o potencial normaliza o operador de Ruelle, provamos que as noções de DLR e conformes coincidem. No shift de renewal obtemos uma caracterização de quando as medidas conformes são infinitas, estudamos o problema para descrever os casos em que o conjunto de medidas conformes pula de medidas finitas para infinitas quando consideramos altas e baixas temperaturas, respectivamente. / We introduce the natural extension of the definition of DLR measure for sigma-finite measures on countable Markov shifts. We prove that the set of DLR measures contains the set of conformal measures associated to Walters potentials. In the BIP case or when the potential normalizes the Ruelle\'s operator we prove that the notions of DLR and conformal coincide. On renewal type shifts we obtained a characterization when the conformal measures are infinite, we study the problem to describe the cases when the set of conformal measures jumps from finite to infinite measures when we consider high and low temperatures, respectively.
|
Page generated in 0.0463 seconds