• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 51
  • 28
  • 20
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 442
  • 89
  • 77
  • 76
  • 63
  • 46
  • 43
  • 39
  • 37
  • 36
  • 34
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Theoretical Investigation Of Conjugate Condensation Heat Transfer Inside Vertical Tubes

Kose, Serhat 01 September 2010 (has links) (PDF)
Based on the well-known theoretical studies related to the film condensation inside vertical tubes, a known temperature distribution is prescribed as boundary condition at the inner surface of the tube wall. But, in reality, there is a thermal interaction between the condensate fluid and conduction through the wall where the temperature variation along the inner surface of the tube wall is unknown and this unknown temperature profile should be determined by taking account of this interaction. In other words, the heat conduction equation for the tube wall and the energy equation for the condensate fluid flow should be coupled and solved simultaneously. Therefore, this type of problem is named &ldquo / conjugate condensation heat transfer problem&rdquo / . Subject to the conjugate condensation heat transfer problem in the industrial applications, there are two different fluid flows separated by a tube where the vapor flowing inside the tube condensates whereas the other one is heated and it flows externally in the counter current direction in the annular passages. Because of its fundamental and practical importance, in this doctoral thesis, the studies are focused on the analytical and numerical investigation of conjugate heat transfer due to the steam condensation inside vertical tubes which is cooled externally by a fluid flowing in the counter current direction. The unknown wall temperatures of the condenser tube, condensate liquid layer inside the tube and the turbulent coolant flow outside the tube are coupled. A computer code, named ZEC, containing condensation conjugate heat transfer model is developed in FORTRAN 90 Language. This code and the models it contains are assessed against the various experimental databases. The predictions of the code ZEC are found to reasonably agree with the experimental results over a wide range of conditions. Therefore, this developed code, ZEC, may be used for the preliminary design of in-tube condensers and for the performance evaluation of such condensers in operation.
122

Reconstruction of the temperature profile along a blackbody optical fiber thermometer /

Barker, David G. January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2003. / Includes bibliographical references (p. 87-89).
123

Inversion of 2D Magnetotelluric and Radiomagnetotelluric data with Non-Linear Conjugate Gradient techniques

Zbinden, Dominik January 2015 (has links)
I implemented and tested the method of Non-Linear Conjugate Gradients (NLCG) to invert magnetotelluric (MT) and radiomagnetotelluric (RMT) data in two dimensions. The forward problem and the objective function gradients were computed using finite-difference methods. The NLCG algorithm was applied to three field data sets to test the performance of the code. It was then compared to the inversion techniques of Occam and damped Occam considering the quality of the output resistivity models and the computation times. The implemented code was further investigated by testing two line search techniques to reduce the objective function along a given search direction. The first line search procedure was constrained to the first Wolfe condition, leading to a rather inexact line search. The second, more thorough line search, was additionally constrained to the second Wolfe condition. Three preconditioners were applied to the NLCG algorithm and their performance was analysed. The first preconditioner was set to the diagonal of the approximate Hessian matrix and updated every 20-th iteration. Preconditioners two and three were updated with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using the identity matrix and the diagonal of the approximate Hessian matrix as start preconditioners, respectively. The tests showed that the method of NLCG is more efficient pertaining to computation times compared to the Gauss-Newton (GN) based techniques (Occam and damped Occam). For the two smaller data sets that were inverted, the NLCG inversion was two to four times faster than Occam and damped Occam. For the larger data set, the NLCG inversion converged more than one order of magnitude faster than the GN based inversion techniques. This is because GN methods require to evaluate the entire sensitivity matrix to update the model, whereas NLCG only needs to compute a matrix-vector product of the Jacobian. Moreover, expensive operations such as matrix products and direct inversions of linearised systems are avoided by NLCG. A limitation of the NLCG algorithm is that it is prone to converge to local minima due to the fixed Lagrange multiplier that is used in the penalty function. Occam inversion, which determines the optimal Lagrange multiplier as part of the inversion, did not show such problems. The line search tests of the NLCG algorithm showed that an inexact line search yields higher convergence per CPU time than a more exact line search. In accordance to previous studies, preconditioning accelerated the convergence of the NLCG algorithm considerably. The preconditioners updated with the BFGS algorithm achieved highest convergence. Choosing the identity matrix as a start preconditioner led to fast but unstable convergence. The reasons for that could not be determined completely. Taking the diagonal of the approximate Hessian as a start preconditioner instead of the identity matrix led to slower convergence for most of the inversion tests, but convergence could be stabilised. All the tests performed within this project led to a robust implementation of the NLCG algorithm. A default set-up pertaining to line search and preconditioning could be established. However, the NLCG set-up can be adjusted by the user to improve convergence for a specific data set. This makes the algorithm implemented in this thesis more flexible than previously introduced NLCG codes. Preconditioning can certainly still be improved with further tests. Moreover, a future project will be to extend the 2D code to 3D, where NLCG should perform especially well, because the number of model parameters is usually higher in 3D.
124

Steady and Transient Heat Transfer for Jet Impingement on Patterned Surfaces

Dobbertean, Mark Michael 01 January 2011 (has links)
Free liquid-jet impingement is well researched due to its high heat transfer ability and ease of implementation. This study considers both the steady state and transient heating of a patterned plate under slot-free-liquid jet impingement. The primary working fluid was water (H2O) and the plate material considered was silicon. Calculations were done for Reynolds number (Re) ranging from 500 to 1000 and indentation depths from 0.000125 to 0.0005 m for three different surface configurations. The effect of using different plate materials and R-134a as the working fluid were explored for the rectangular step case. The distributions of the local and average heat-transfer coefficient and the local and average Nusselt number were calculated for each case. A numerical model based in the FIDAP computer code was created to solve the conjugate heat transfer problem. The model used was developed for Cartesian coordinates for both steady state and transient conditions. Results show that the addition of surface geometry alters the fluid flow and heat transfer values. The highest heat-transfer coefficients occur at points where the fluid flow interacts with the surface geometry. The lowest heat-transfer coefficients are found in the indentations between the changes in geometry. The jet velocity has a large impact on the heat transfer values for all cases, with increasing jet velocity showing increased local heat-transfer coefficients and Nusselt number. It is observed that increasing the indentation depth for the rectangular and sinusoidal surfaces leads to a decrease in local heat transfer whereas for triangular patterns, a higher depth results in higher heat-transfer coefficient. The transient analysis showed that changing surface geometry had little effect on the time required to reach steady state. The selection of plate material has an impact on both the final maximum temperatures and the time required to reach steady state, with both traits being tied to the thermal diffusivity (α) of the material.
125

Adiabatic and overall effectiveness in the showerhead of a film cooled turbine vane and effects of surface curvature on adiabatic effectiveness

Nathan, Marc Louis 08 February 2012 (has links)
Two sets of experiments were performed on a simulated turbine nozzle guide vane. First, adiabatic and overall effectiveness measurements were taken in the showerhead region of the vane using adiabatic and matched Biot vane models, respectively. Measurements of overall effectiveness in the showerhead region are not found in the literature, and are a useful baseline for validating the results of computational fluid dynamics (CFD) simulations. Overall effectiveness is useful because it shows the results of combining film cooling, internal convection, and surface conduction to provide a more complete picture of vane cooling than adiabatic effectiveness. An impingement plate was utilized to generate internal jet cooling. Momentum flux ratios were matched between the models and ranged from I*SH = 0.76 to 6.70, based on showerhead upstream approach velocity. The second set of experiments used a different model to examine the effects of surface curvature on adiabatic effectiveness. Results in open literature are found by varying the radius of curvature of a fixed setup, so the current approach was novel in that it looked at adiabatic effectiveness at locations of various curvature around the same vane. Blowing ratios from M = 0.4 to M = 1.6 were tested at a density ratio of DR = 1.20 for two locations on the suction side of the vane. Results were presented in terms of laterally averaged adiabatic effectiveness and contour plots of adiabatic effectiveness, and were compared to literature. / text
126

Development of an Impinging Receiver for Solar Dish-Brayton Systems

Wang, Wujun January 2015 (has links)
A new receiver concept utilizing impinging jet cooling technology has been developed for a small scale solar dish-Brayton system. In a typical impinging receiver design, the jet nozzles are distributed evenly around the cylindrical absorber wall above the solar peak flux region for managing the temperature at an acceptable level. The absorbed solar irradiation is partially lost to the ambient by radiation and natural convection heat transfer, the major part is conducted through the wall and taken away by the impingement jets to drive a gas turbine. Since the thermal power requirement of a 5 kWe Compower® micro gas turbine (MGT) perfectly matches with the power collected by the EuroDish when the design Direct Normal Irradiance (DNI) input is 800 W/m2, the boundary conditions for the impinging receiver design in this work are based on the combination of the Compower®MGT and the EuroDish system. In order to quickly find feasible receiver geometries and impinging jet nozzle arrangements for achieving acceptable temperature level and temperature distributions on the absorber cavity wall, a novel inverse design method (IDM) has been developed based on a combination of a ray-tracing model and a heat transfer analytical model. In this design method, a heat transfer model of the absorber wall is used for analyzing the main heat transfer process between the cavity wall outer surface, the inner surface and the working fluid. A ray-tracing model is utilized for obtaining the solar radiative boundary conditions for the heat transfer model. Furthermore, the minimum stagnation heat transfer coefficient, the jet pitch and the maximum pressure drop governing equations are used for narrowing down the possible nozzle arrangements. Finally, the curves for the required total heat transfer coefficient distribution are obtained and compared with different selected impinging arrangements on the working fluid side, and candidate design configurations are obtained. Furthermore, a numerical conjugate heat transfer model combined with a ray-tracing model was developed validating the inverse design method and for studying the thermal performance of an impinging receiver in detail. With the help of the modified inverse design method and the numerical conjugate heat transfer model, two impinging receivers based on sintered α-SiC (SSiC) and stainless steel 253 MA material have been successfully designed. The detailed analyses show that for the 253 MA impinging receiver, the average air temperature at the outlet and the thermal efficiency can reach 1071.5 K and 82.7% at a DNI level of 800 W/m2 matching the system requirements well. Furthermore, the local temperature differences on the absorber can be reduced to 130 K and 149 K for two different DNI levels, which is a significant reduction and improvement compared with earlier published cavity receiver designs. The inverse design method has also been verified to be an efficient way in reducing the calculation costs during the design procedure. For the validation and demonstration of the receiver designs, a unique experimental facility was designed and constructed. The facility is a novel high flux solar simulator utilizing for the first time Fresnel lenses to concentrate the light of 12 commercial high power Xenon-arc lamps. Finally, a prototype of a 253 MA based impinging was experimentally studied with the help of the 84 kWe Fresnel lens based high flux solar simulator in KTH. / <p>QC 20151123</p> / Optimised Microturbine Solar Power System , OMSOP
127

The effects of three different priors for variance parameters in the normal-mean hierarchical model

Chen, Zhu, 1985- 01 December 2010 (has links)
Many prior distributions are suggested for variance parameters in the hierarchical model. The “Non-informative” interval of the conjugate inverse-gamma prior might cause problems. I consider three priors – conjugate inverse-gamma, log-normal and truncated normal for the variance parameters and do the numerical analysis on Gelman’s 8-schools data. Then with the posterior draws, I compare the Bayesian credible intervals of parameters using the three priors. I use predictive distributions to do predictions and then discuss the differences of the three priors suggested. / text
128

Preparation of para-disubstituted benzenes, formation of optically pure cyclic amines by intramolecular conjugate displacement and total synthesis of marinopyrrole B

Cheng, Ping Unknown Date
No description available.
129

Preparation and Synthetic Applications of Chiral Alkyl Boronates and Unsaturated Alkenyl Boronates

Lee, Jack C. H. Unknown Date
No description available.
130

Cooling methods for electrical machines : Simulation based evaluation of cooling fins found on low voltage general purpose machines

Karlsson, Anders January 2014 (has links)
The main goal of this thesis project is to identify interesting concepts related to cooling of electrical motors and generators which could be evaluated using suitable computer simulation tools. As the project proceeded it was decided to focus on investigating how the air from a fan flows along the finned frame of a general purpose low voltage electrical machine, how the heat is transferred between the frame and the cooling air and what the temperature distribution looks like. It was also investigated if it is possible to make improvements in the effectiveness of the cooling without adding additional coolers. This investigation focused on varying the fin design and evaluating the resulting temperature distribution. Due to the complex nature of the simulations a segment, and not the full frame, was considered. Simulation model validation was performed through comparing air speed measurements that were performed on two different machines with the corresponding simulated air speed. The validation showed that good agreement between simulated and measured air speeds are obtained. The conclusion from the simulations is that slight modifications to the current fin design could increase the cooling effect of the finned surface. The air velocity measurements also indicate that the cooling of the machines surface could potentially be improved by small changes in the exterior of the frame. / Målet med detta examensarbete var att identifiera intressanta koncept relaterade till kylning av elektriska maskiner och generatorer, som kunde utvärderas med lämplig programvara för datorsimuleringar. Under projektets gång så bestämdes det att fokusera på hur luften från en fläkt flödar längs med en generell lågspänningsmaskin, hur värmen överförs från ramen till den omgivande luften och hur temperaturfördelningen ser ut. Det undersöktes även om det var möjligt att förbättra effektiviteten av kylningen utan att ansluta extra kylanordningar. Undersökningarna fokuserades på olika fendesigner och dess påverkan på värmefördelningen. På grund av simuleringarnas komplexitet så har simuleringarna endast utförts på ett segment istället för hela maskinen. Validering av simuleringarna utfördes genom att jämföra de simulerade lufthastigheterna med verklig lufthastighet som mättes på två maskiner i testmiljö. Valideringen visade att simuleringarna överensstämmer väl med de mätningar som utfördes. Slutsatsen utifrån simuleringarna är att mindre förändringar av fenornas nuvarande design kan förbättra fenornas kylningsförmåga. Mätningarna av lufthastigheten ger även indikationer på att kylningen av maskinens utsida eventuellt kan förbättras genom små förändringar av ramens exteriör.

Page generated in 0.0274 seconds