• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 26
  • 16
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 448
  • 448
  • 142
  • 72
  • 57
  • 53
  • 48
  • 35
  • 34
  • 25
  • 23
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

A Comprehensive Petrochemical Vulnerability Index for Marine Fishes in the Gulf of Mexico

January 2020 (has links)
abstract: The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization). The resulting PVI can be used to guide attention to the species potentially most in need of immediate attention in the event of an oil spill or other petrochemical influx, as well as those species that may require intensive long-term recovery. The scored relative vulnerability rankings can also provide information on species that ought to be the focus of future toxicological research, by indicating which species lack toxicological data, and may potentially experience significant impacts. / Dissertation/Thesis / Masters Thesis Applied Biological Sciences 2020
272

How common ravens (Corvus corax) exploit anthropogenic food sources through time and space in a semi-transformed, alpine environment

Jain, Varalika 16 February 2022 (has links)
From large-scale agriculture and farming to concentrated fishing discards, garbage dumps, game carcasses and bird feeders, human action has been increasingly affecting natural systems and animal species through the deliberate and unintentional provisioning of food resources. Anthropogenic food sources (AFSs) are often more spatially concentrated, easily accessible, abundant and stable than natural food sources. The common raven, Corvus corax, is a behaviourally flexible and ecologically adaptable species that has managed to thrive in human transformed landscapes by exploiting these anthropogenic sources of food. The aim of this research was to investigate how raven individuals vary in their use of different AFSs through space and time. I used data from a long-term GPS tracking initiative in the Upper Austrian Alps to investigate (1) the space-use of non-breeding raven individuals across this landscape to answer the questions: (2) what types of AFSs are most extensively used by ravens in this landscape, and what factors predict individual variation in AFS use (i.e., apparent reliance on and access to resources), specifically (3a) the number of AFSs visited and (3b) the probability of being at AFSs at any given point in time. Movement patterns can reveal information on the foraging decisions made by individuals, including how they use different AFSs. Non-breeding raven individuals exhibited great variation in how they moved around and used the landscape. The number of AFSs visited, but not the probability of being at an AFS (at any given point in time), varied among individuals with different ranging behaviour and of different age class (i.e., juvenile and adults) and origin (i.e., captive-bred-released and wild-caught), suggesting that experience affects AFS-use. Non-breeders differed in their use of AFSs by season, visiting the highest number of AFSs but having the lowest probability being present at an AFS in winter, potentially indicative of high foraging competition under stressful environmental conditions. They were also found to extensively exploit resources in spring, both visiting high numbers of AFSs and having a high probability of being present at an AFS, perhaps due to decreased competition (e.g., from breeders) and increases in food availability. The category (i.e., wildpark, refuse site, hut) of AFSs also influenced the probability of an individual being present at the site, likely because of differences in resource quality, quantity and replenishing rate. A very few foraging sites were highly popular, while over half attracted less than 5 individuals throughout the study. By exploiting AFSs, raven population numbers have increased across their range, raising conservation concerns (i.e., predation on threatened species and human-wildlife conflict). With a better understanding of the patterns of AFS-use and the factors influencing these patterns, I suggest that strategies to manage ravens in this semi-transformed, alpine environment should focus on controlling the supply of food at AFSs at a regional scale.
273

How has woody vegetation changed in north-east Namibia in response to land use, climate and fire?

Eastment, Conor 14 September 2020 (has links)
Bush encroachment or the thickening of woody vegetation is a phenomenon occurring throughout savannas, which tends to be more pronounced in small protected areas. The consequences of bush encroachment are often negative for the conservation of biodiversity, for the promotion of tourism and the prevention of wildfires. Hence, effective monitoring of woody vegetation and the factors which influence its spread are essential. This is particularly the case for protected areas such as that of Bwabwata National Park (BNP) in north-east Namibia. With a complex land use history and different fire management approaches being adopted throughout the area, the effect of fire on woody vegetation in BNP is currently poorly understood. This study used a 20-year-old repeat photography monitoring project and satellite-based remote sensing products to explore woody cover dynamics in BNP. Results revealed that woody cover has increased by 13% since 1999 in BNP. Furthermore, the results show differences in the structure of woody vegetation. Repeated late dry season fires in the west of the park have driven an increasing dominance of 3m in eastern sections of the park. This influence of different fire regimes spatially across BNP, suggests that local fire management is a significant determinant of woody vegetation change. Woody vegetation change differs spatially across BNP due to frequent late dry season fires prevailing in the west and less frequent earlier season fires occurring in the east. Therefore, in order to reduce the mortality of woody species and conserve heterogenous height structure in the west, a reduction of frequent late dry season fires is required. Early dry season fires are shown to reduce the rate of increasing total woody cover change and, therefore, this fire management strategy arguably contributes towards the reduction of wildfire risk, conservation of biodiversity and promotion of tourism.
274

The influence of fire-grazer interactions on forb communities in a highveld grassland

Parrish, Margaret Doris January 2017 (has links)
In southern Africa, disturbance contributes to the heterogeneity of grassland and savanna ecosystems. Fire and grazing act as the primary disturbances in these systems, and interactions between the two are common. As such, an understanding of the relationship between fire and grazing is essential for the conservation of biotic diversity and the production of high-quality forage for game and livestock. Frequent fires followed by concentrated grazing have been shown to facilitate patches of short, palatable grasses ("grazing lawns") within grassland and savanna landscapes. The effects of grazing lawn management on other aspects of biodiversity have received little attention. Forbs (non-graminoid, herbaceous plants) are an important component of grassland ecosystems, but how they respond to disturbance is largely unknown. This study compared changes in forb communities on and off of firebreaks (an extreme example of a grazing lawn) in a high altitude mesic grassland. Native herbivore biomass was significantly higher on firebreaks than in the surrounding lightly grazed matrix and the firebreaks, while more compacted, did not show significant signs of degradation. There were no significant differences in forb abundance or richness between annually burned and intermittently burned plots, and there was no species turnover associated with the annually burned, heavily grazed treatment. Speciesspecific differences in functional traits on annually burned and intermittently burned plots were likely a function of light limitation, as mammalian palatability scores were nominal. Ultimately, ten years of intensive fire and grazing have had minimal impact on forb communities in a high altitude mesic grassland. The results indicate that in this type of Highveld grassland, heavily grazed and annually burned patches are not detrimental to the forb community and clearly enhance habitat diversity for grazers.
275

Spatial and temporal dynamics of Batesian mimicry between Adelpha californica and Limenitis lorquini

Prusa, Louis Albert 01 January 2018 (has links)
Conspicuous coloration is one of the main ways that animals communicate. The use of eye-catching color patterns to warn predators of an unprofitable trait is referred to as aposematism. Once predators learn to recognize the color pattern, a new signaling niche becomes available where other species can share the same signal. This mimicry niche can involve a “hide in plain sight” strategy by mimicking or parasitizing this signal, with mimics lacking the defense and associated costs that make them unprofitable. This is termed Batesian mimicry, and it decreases predation by taking advantage of the memory and learning of the predator community. Thus, a primary prediction in Batesian mimicry systems is that the model and mimic are found in sympatry. Another, fundamental prediction of Batesian mimicry is that the model outnumbers the mimic and that models emerge before the mimics to educate the predator guild. Some of these patterns were not significant in the California Coast Ranges as seen in Long et al., (2015), and no study has estimated population sizes for this temperate Batesian mimicry system. Furthermore, compared with community studies of mutualistic Müllerian mimicry in the tropics, no studies have tested predictions of parasitic Batesian mimicry on small scale patterns of habitat use and movement patterns. If mimicry is as an important part of the biology of these temperate species, as it is for their tropical counterparts, we predict that in addition to emerging first and being more abundant, the model and mimic will overlap strongly in habitat but the model will be more abundant in each habitat, and will move more and be more widespread among available habitats. Our results confirm these predictions and indicate that A. californica is effectively educating habitat specialist and generalist predators providing an umbrella of protection for the mimic L. lorquini.
276

The ecological genetic consequences of local endemism and natural population fragmentation in Banksia ilicifolia (Proteaceae)

Heliyanto, Bambang January 2006 (has links)
[Truncated abstract] The species-rich Southwest Australian Floristic Region (SAFR) is a global biodiversity hotspot. Characterised by a Mediterranean-type climate and nutrient deficient landscape, this region is endowed with 7380 native vascular plant species/sub species, of which 49% are endemic and 2500 are of conservation concern. Despite the global significance of this region, there is still only a poor understanding of the factors influencing high diversity and endemism, and especially the population genetic consequences of narrow endemism and naturally fragmented species distribution. Holly leaved banksia (Banksia ilicifolia R. Br.), although widespread through Southwest Western Australia (SWWA), has a naturally fragmented distribution, with generally small populations restricted to swales and wetland fringes with depth to groundwater less than 10 m. As such, it provides an excellent model to better understand the ecological genetic consequences of local endemism, population size and natural population fragmentation . . . Products of wide outcrossing (over 30 km) showed a heterosis effect over local outcrossing, indicating increased ecological amplitude of offspring following interpopulation mating. These results suggest that the breeding and mating biology of B. ilicifolia counters the negative genetic erosion effects of narrow ecological amplitude and small population size. Recent habitat fragmentation, and reductions in population size and increased isolation, is impacting on these processes, but further research is required to assess the ultimate consequences of these genetic effects for population viability.
277

A historical record of land cover change of the lesser prairie-chicken range in Kansas

Spencer, David A. January 1900 (has links)
Master of Science / Department of Geography / Melinda Daniels / The Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is a prairie grouse of conservation concern in the Southern Great Plains. In response to declining population numbers and ongoing threats to its habitat, the Lesser Prairie-Chicken was listed as threatened under the Endangered Species Act in May 2014. In western Kansas, the Lesser Prairie-Chicken occupies the Sand Sagebrush Prairie, Mixed-grass Prairie, and Short-grass/CRP Mosaic Ecoregions. Since the beginning of the 20th century, the overall range and population has declined by 92% and 97% respectively. Much of this decline is attributed to the loss and fragmentation of native grasslands throughout the Lesser Prairie-Chicken range. Whereas much of the loss and degradation of native grassland have been attributed to anthropogenic activities such as conversion of grassland to cropland and energy exploration, federal legislation since the 1980s to convert cropland on highly erodible soils to perennial grasses through the U.S. Department of Agriculture (USDA) Conservation Reserve Program (CRP) may curtail or reverse these trends. My objective was to document changes in the areal extent and connectivity of grasslands in the identified Lesser Prairie-Chicken range in Kansas from the 1950s to 2013 using remotely sensed data. I hypothesized that the total amount of grassland decreased between the 1950’s and 2013 because of an increase in agricultural practices, but predicted an increase of grassland between 1985 and 2013 in response to the CRP. To document changes in grassland, land cover maps were generated through spectral classification of LANDSAT images and visual analysis of aerial photographs from the Army Map Service and USDA Farm Service Agency. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. Since 1985, the amount of grassland in the Lesser Prairie-Chicken range in Kansas has increased by 210,9963.3 ha, a rise of 11.9%, while the mean patch size and area-weighted mean patch size of grassland increased 18.2% and 23.0% respectively, indicating grassland has become more connected during this time in response to the CRP. Prior to the implementation of CRP, the amount of grassland had been decreasing since 1950, as 66,722.0 ha of grassland was converted to croplands. The loss of grassland had a considerable effect on the patch size of grasslands, as mean patch size and area-weighted mean patch size decreased by 8.8% and 11.1% respectively. The primary driver of grassland loss between 1950 and 1985 was the emergence of center pivot irrigation, which had its greatest impact in western and southwestern parts of the range in Kansas. In particular, while the amount of grassland in Range 5, a region of the Lesser Prairie-Chicken range found in southwest Kansas, has increased overall since the 1950s by 4.7%, the area-weighted mean patch size has decreased by 53.0% in response to center pivot irrigation fragmenting the landscape. While the CRP has been successful in increasing and connecting grassland throughout the Lesser Prairie-Chicken range to offset the loss of grassland since the 1950s, continuation of the CRP faces an uncertain future in the face of rising commodity prices, energy development, and reduction in program scope leaving open the possibility that these areas that have created habitat for Lesser Prairie-Chickens could be lost. As time progresses, a reduction in the scope of the CRP would reduce the amount of habitat available to Lesser Prairie-Chickens, threatening the persistence of their population.
278

Using Linear Mixed Models to Analyze Native and Non-Native Species Abundances in Coastal Sage Scrub

anderson, kaylee 01 January 2016 (has links)
Coastal Sage Scrub (CSS) is a low scrubland plant community native to the coasts of California, housing many threatened and endangered species. Due to the invasion of non-native plants, many areas of CSS have type converted to annual grasslands and the fire frequency has accelerated; fire in turn, may facilitate further invasion, leading to a loss of biodiversity. While many studies document post-fire succession in these communities, pre-fire data are rarely available for comparison, especially data on seedling emergence. I analyzed post-fire recovery of a type-converted grassland community, comparing seedling emergence data for the first and third year after fire to the three years preceding the fire. Non-native species abundances declined more after the fire than did native abundances. This pattern was still present in 2015, three years post-fire. Two native species, Amsinckia menziesii var. intermedia (Amsinckia) and Phacelia distans (Phacelia), were subjects of seed addition treatments pre-fire, but I found no evidence that past seeding increased their abundances post-fire. Amsincki did recover to its pre-fire density three years after the fire, while the density of Phacelia declined over 75% in both the year immediately post-fire and three years after the fire. However, a third native species, Lupinus bicolor (Lupinus), was both much more abundant and also more spatially widespread both immediately after the fire and two years later. This supports the hypothesis that Lupinus is stored in the soil seed bank and the fire may have given this species the opportunity to recover by lowering abundances of non-native competitors. This analysis will inform future conservation efforts by improving our understanding of how seed banks impact the post-fire recovery of native species.
279

Reproductive biology and conservation genetics of mangroves in South China and Hong Kong

Ge, Xuejun., 葛學軍. January 2001 (has links)
published_or_final_version / Zoology / Doctoral / Doctor of Philosophy
280

Soundscape Ecology of Hawaiian Spinner Dolphin Resting Bays

Heenehan, Heather Leigh January 2016 (has links)
<p>Sound is a key sensory modality for Hawaiian spinner dolphins. Like many other marine animals, these dolphins rely on sound and their acoustic environment for many aspects of their daily lives, making it is essential to understand soundscape in areas that are critical to their survival. Hawaiian spinner dolphins rest during the day in shallow coastal areas and forage offshore at night. In my dissertation I focus on the soundscape of the bays where Hawaiian spinner dolphins rest taking a soundscape ecology approach. I primarily relied on passive acoustic monitoring using four DSG-Ocean acoustic loggers in four Hawaiian spinner dolphin resting bays on the Kona Coast of Hawai‛i Island. 30-second recordings were made every four minutes in each of the bays for 20 to 27 months between January 8, 2011 and March 30, 2013. I also utilized concomitant vessel-based visual surveys in the four bays to provide context for these recordings. In my first chapter I used the contributions of the dolphins to the soundscape to monitor presence in the bays and found the degree of presence varied greatly from less than 40% to nearly 90% of days monitored with dolphins present. Having established these bays as important to the animals, in my second chapter I explored the many components of their resting bay soundscape and evaluated the influence of natural and human events on the soundscape. I characterized the overall soundscape in each of the four bays, used the tsunami event of March 2011 to approximate a natural soundscape and identified all loud daytime outliers. Overall, sound levels were consistently louder at night and quieter during the daytime due to the sounds from snapping shrimp. In fact, peak Hawaiian spinner dolphin resting time co-occurs with the quietest part of the day. However, I also found that humans drastically alter this daytime soundscape with sound from offshore aquaculture, vessel sound and military mid-frequency active sonar. During one recorded mid-frequency active sonar event in August 2011, sound pressure levels in the 3.15 kHz 1/3rd-octave band were as high as 45.8 dB above median ambient noise levels. Human activity both inside (vessels) and outside (sonar and aquaculture) the bays significantly altered the resting bay soundscape. Inside the bays there are high levels of human activity including vessel-based tourism directly targeting the dolphins. The interactions between humans and dolphins in their resting bays are of concern; therefore, my third chapter aimed to assess the acoustic response of the dolphins to human activity. Using days where acoustic recordings overlapped with visual surveys I found the greatest response in a bay with dolphin-centric activities, not in the bay with the most vessel activity, indicating that it is not the magnitude that elicits a response but the focus of the activity. In my fourth chapter I summarize the key results from my first three chapters to illustrate the power of multiple site design to prioritize action to protect Hawaiian spinner dolphins in their resting bays, a chapter I hope will be useful for managers should they take further action to protect the dolphins.</p> / Dissertation

Page generated in 0.146 seconds