• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 26
  • 16
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 448
  • 448
  • 142
  • 72
  • 57
  • 53
  • 48
  • 35
  • 34
  • 25
  • 23
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Fine-Scale Foraging Behavior of Humpback Whales Megaptera novaeangliae in the Near-Shore Waters of the Western Antarctic Peninsula

Tyson, Reny Blue January 2014 (has links)
<p>High-resolution bio-logging tools were used to examine the fine-scale foraging behaviors of humpback whales (Megaptera novaeangliae) in the coastal waters of the Western Antarctic Peninsula during the austral autumn of 2009 and 2010. Discrete feeding events (i.e., lunges) were inferred from the biologging records of thirteen whales, including a mother and her calf. In general, humpback whales exhibited efficient foraging behaviors that allowed them to maximize energetic gains and minimize energetic costs as predicted by optimal foraging theory. They fed at a continuous and high rate in the upper portion of the water column (< 100 m) from approximately dusk to dawn when their prey (Antarctic krill, Euphausia superba) were most vulnerable and less costly to acquire (i.e., near the surface). When forced to dive to greater depths, they adjusted their behaviors (e.g., descent and ascent rates) so that they could maximize their foraging durations and increase their lunging rates. In addition, humpbacks appeared to accept short term (i.e., dive by dive) costs associated with depleted oxygen stores in favor of maximizing long term (i.e., daily) energetic gains. Such efficient behaviors are particularly beneficial for mother-calf pairs who have additional energetic costs associated with foraging, such as lactation (mother), growth (calf), and maintaining proximity. In addition, because the physiology of humpback whales is poorly understood yet critically important for predicting their behaviors in response to fluctuations in their environmental conditions, foraging behaviors inferred from the bio-logging records were used to estimate their metabolic rates, oxygen storage capacities, and oxygen replenishment rates under the framework of optimal foraging theory. This research suggests that the current techniques used to estimate humpback whale oxygen stores is appropriate but that the estimation of metabolic rates of humpbacks while foraging and while traveling need to be addressed further. This work aims to increase the current understanding of humpback whale foraging behaviors along the Western Antarctic Peninsula so that appropriate measures can be taken to aid in their recovery and in the sustainability of the Antarctic marine ecosystem.</p> / Dissertation
302

The feeding and behavioral ecology of black spider monkey subgroups (Ateles paniscus paniscus) in the context of illegal artisinal goldmining activities in the Brownsberg Nature Park, Suriname

Vreedzaam, Arioene Uncas Naldi 13 June 2014 (has links)
<p> The Brownsberg Nature Park (BNP) in Suriname is home to eight monkey species: <i>Saguinus midas, Saimiri sciureus, Cebus apella, Alouatta seniculus. Pithecia pithecia, Cebus olivaceus, Chiropotes satanas (sagulatus), </i>and <i>Ateles paniscus.</i> Several studies have undertaken the task to better study the feeding and behavioral ecology of these species within the park. However, studies on the black spider monkey (<i>Ateles paniscus</i>) have been absent. As part of my thesis, I decided to conduct a baseline feeding and behavioral ecology study of this species during the period May 2008 &ndash; July 2008. In addition, I developed a field method for determining mercury levels (in parts per million = ppm) in fecal and urine samples of wild monkeys. Since the park is under enormous pressure from illegal gold mining activities, I decided to collect baseline data on potential exposure of wild monkeys to mercury in the environment. I also collected samples from monkeys at the zoo in Paramaribo and monkeys born in captivity at Hiram College in Ohio. I collected data on the frequency of feeding, resting, and traveling by black spider monkey subgroups every 10 minutes during all day follows. Feeding ecology data consisted of identifying fruits eaten by these subgroups. For the mercury analysis I used the OSUMEX LTD. home testing kit. Results from the behavioral data show the following frequencies of activities for the entire study period: 32% feeding, 43% resting, and 25% traveling. The feeding data further justifies spider monkeys as ripe fruit frugivores: 76% of food items consisted of ripe fruit, while 22% consisted of leaves, and 2% was comprised of flowers. The mercury testing results from the Brownsberg and zoo populations ranged between 0.025 ppm to 0.1 ppm (toxic level = 0.8 ppm). The Hiram College monkeys all displayed levels at 0.000 ppm. The results from the mercury analyses indicate that 1) wild monkeys in the vicinity of gold mining activities may not be under the same threat as humans, with regards to mercury exposure through food, and 2) that wild monkeys are still relative exposed to mercury in the environment whether it be natural or anthropogenic.</p>
303

Does Additional Habitat Protection Facilitate the Recovery of Species Protected by the Endangered Species Act?

So, Rachel I. 16 April 2014 (has links)
Earlier studies have found that endangered species recovery is only weakly associated with the tools enabled by the U.S. Endangered Species Act (ESA). With habitat loss often cited as a leading cause of species declines, we tested whether the recovery of ESA-listed species is instead associated with the protection of critical habitat (CH) by protected areas. We tested the relationship for 299 species using recovery indices derived from the biennial status reports to Congress (1990-2010), as well as NatureServe and IUCN population status data. We found no overall relationship between recovery and the extent to which CH is protected. However, restricting the analysis to recovering species, listed species with larger areas of protected (R2 = 0.158) or strictly protected (R2 = 0.194) CH fared better than species with less protected or strictly protected CH areas. Declining species (199 of 273 species studied) fared no better with more protected habitat. We conclude that the abatement of habitat loss alone does not necessarily facilitate recoveries for the majority of ESA-listed species. We also note that the weak relationships we observed in this study may be reflective of poor recovery status estimates.
304

Elevational Range Shifts Driven by Climate Change in Tropical Mountains: Assessment and Conservation Opportunities

Foreo Medina, German Andres January 2012 (has links)
<p>Global climate change can cause shifts in species distributions, and increases in some of their competitors, predators, and diseases that might even cause their extinction. Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow: the only escape for species may be to move to higher elevations. There are few data to suggest that they do, and our understanding of the process is still very limited. Yet, the greatest loss of species from climate disruption may be for tropical montane species. To better understand the potential process of elevational range shifts in the tropics and their implications we have to: 1) Build theoretical models for the process of range shifting, 2) Evaluate potential constraints that species could face while moving to higher elevations, 3) Obtain empirical evidence confirming the uphill shift of species ranges, 4) Determine the number of extinctions that could arise from elevational range shifts (mountain top extinctions) and 5) Identify vulnerable species and areas, and determine their representation by the Protected Areas Network. The purpose of this dissertation is to address these issues, by applying novel methods and collecting empirical evidence. </p><p>In the second chapter I incorporated temperature gradients and land-cover data from the current ranges of species in a model of range shifts in response to climate change. I tested 4 possible scenarios of amphibian movement on a tropical mountain and estimated the constraints to range shifts imposed by each scenario. Confirming the occurrence of elevational range shifts with empirical data is also essential, but requires historical data as a baseline for comparison. I repeated a historical transect in Peru, sampling birds at the same locations they were sampled 40 years ago, and compared their elevational ranges between sampling occasions to evaluate if they were moving uphill as a response to warming temperatures. Finally, based on the results from this comparison, I estimated the potential extinctions derived from elevational range shifts, using information on the species distribution, the topography and land cover within the ranges and surrounding areas. I evaluated the extent of mountain top extinctions for 172 bird species with restricted ranges in the northern Andes. I also considered how Colombia's protected Area Network represents species and sites that are vulnerable in the face of climate change.</p><p>More than 30% of the range of 21 of 46 amphibian species in the tropical Sierra Nevada de Santa Marta is likely to become isolated as climate changes. More than 30% of the range of 13 amphibian species would shift to areas that currently are unlikely to sustain survival and reproduction. Combined, over 70% of the current range of 7 species would become thermally isolated or shift to areas that currently are unlikely to support survival and reproduction. The constraints on species' movements to higher elevations in response to climate change can increase considerably the number of species threatened by climate change in tropical mountains.</p><p>In the comparison of bird distributions in the Cerrros del Sira, in Peru, I found an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. The range shifts in elevation were similar across different trophic guilds. Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change. </p><p>The estimated number of mountain top extinctions from climate disruption in the northern Andes is low, both the absolute number (5 species) and the relative number (less than 0.5% of Colombian land birds). According to future climate predictions these extinctions will not likely occur in this century. The extent of species loss in the Andes is not predicted by absolute mountaintop extinctions modeled by the kind of processes most other studies use. Rather, it is highly contingent -- the species will survive or not depending on how well we protect their much reduced ranges from the variety of other threats.</p> / Dissertation
305

Bycatch and foraging ecology of sea turtles in the Eastern Pacific

Kelez Sara, Shaleyla January 2011 (has links)
<p>Sea turtles are long lived marine species that are currently endangered because their life history and population dynamics hinder them from withstanding modern anthropogenic threats. Worldwide, fisheries bycatch in on the major threats to the survival of sea turtles and that is also the case in the Eastern Pacific. To establish regional conservation priorities for the mitigation of bycatch, it is essential to first obtain a comprehensive picture of the regional sea turtle bycatch situation. This comprehensive analysis was lacking for the Eastern Pacific; therefore one component of this dissertation (the first chapter) is focused on delivering a regional bycatch analysis for the Eastern Pacific. A literature review was conducted to obtain numbers of turtles captured, frequencies, bycatch and mortality rates per species and country in trawl, longline, and gillnet fisheries, and to compile results of mitigation measures. Moreover, estimates for current annual capture rates in trawl fisheries were obtained and compared with population numbers. </p><p>This regional bycatch used all the information compiled and synthesized to give conservation priorities at the regional level. The review underlines the high bycatch rates in trawls for Costa Rica, Guatemala, and El Salvador and the detrimental impact that these captures could have specially for hawksbill Eretmochelys imbricata due to its reduced population numbers and for green turtle Chelonia mydas due to its highest mortality rate. It also emphasizes the continuous lack of use of TEDs as a bycatch mitigation measure. In longline fisheries, the review identifies the high bycatch rates in pelagic longline fisheries of Costa Rica, Ecuador, and Nicaragua in a global context but given that olive ridley Lepidochelys olivacea is the most common species captured in these countries, it highlights the capture of loggerhead Caretta caretta and leatherback Dermochelys coriacea off Peru and Chile due to their small population numbers. Bottom longlines have high mortality rates compared with pelagic longlines in the region and the review identifies a need for further research in this area due to the scarce information but high mortality rates. The review also noted that some mitigation measures for pelagic longlines like circle hooks and hooks with appendages could bring improvements in the mitigation of bycatch in longline fisheries in the region, there is still considerable work to be done in technology transfer, sea turtle handling, and estimates of post-release mortality rates. </p><p>For gillnet fisheries, the most important highlight is how little information exists for the region given the high rates of bycatch for sea turtles in this gear. However, the difficulties of studying bycatch in highly dynamic and artisanal fisheries are recognized as the major impediment for this situation. Nevertheless, the high bycatch rates in areas where sea turtles congregate in high numbers like in foraging grounds for loggerhead in Baja California, Mexico and for greens in Paracas and Sechura, Peru, calls for either gear modifications (which has not been that successful), change of gear, or areas closed for gillnets. </p><p>The second half of the dissertation is focused on foraging ecology of oceanic sea turtles in the Southeast Pacific Ocean. Sea turtles in the oceanic stage are the least known stage due to the difficulty of accessing these individuals. However, it is a very important stage in the life cycle and can be critical for the population dynamics of sea turtles as some population models have shown. Therefore, this dissertation is filling a gap in the life cycle of sea turtle populations in the Eastern Pacific. </p><p>To study foraging ecology, we used Stable Isotope Analysis (SIA) of turtle tissues as well as potential prey items from the oceanic realm. SIA is a great tool because it gives an integrated view, from days to weeks, of prey from a consumer tissue. SIA also can be used to link consumers to habitats when elements that have spatial trends are used. In chapter two, we investigate the foraging ecology of three species of sea turtles to compare trophic status and to observe if spatial patterns were shown in the SIA signatures of sea turtles. To our knowledge this is the first study employing SIA to research the ecology of three species of sea turtles from the same time and space. Our results show that spatial patterns in delta15N and delta13C were observed in sea turtle's tissues as correlations with latitude. We also found that loggerhead's signatures differed significantly from green and olive ridleys, especially in terms of delta15N. Loggerheads had higher values of delta15N and also a wider nitrogen trophic niche. Greens and olive ridleys were similar in isotopic nitrogen values but they were significantly different in carbon. When analyzing a smaller group of animals captured in a more restricted area, nitrogen differences were not found which suggests that latitudinal spatial patterns play an important role in the nitrogen signature. On the contrary, carbon signatures still differed among turtles in the restricted area which suggest that the inshore-offshore trend is strong and made us conclude that loggerheads are restricted to oceanic areas but that greens and olive ridleys could be using both coastal and oceanic areas.</p><p>In chapter three, we conduct a mixing model analysis using the Bayesian program SIAR to identify the most important prey items for green, olive ridley, and loggerhead off Peru. Also, we wanted to identify the contribution of longline baits in the diet of oceanic turtles. The analysis was restricted to the central zone of our study area to avoid spatial trends in nitrogen. To use as sources in the model, we collected potential prey items offshore Peru during trips on longline fishing vessels and obtained their stable isotope signatures. Results from our mixing models show that for greens and olive ridleys, crustaceans, mollusks, and coastal Ulva (indicator of coastal prey) were the only important food items. In the case of greens, crustaceans had a very high proportional contribution and due to the fact that nitrogen values of crustaceans were the lowest ones among the sources it seems that greens would be eating in a lower trophic level. The importance of coastal Ulva for greens and olive ridleys is a confirmation of our findings from chapter two where we suggest that these two species could be using oceanic as well as coastal areas. </p><p>Results for loggerheads showed cnidarians, mollusks, mackerel and squid bait as foraging items and highlights the differences among this species and the other two. The lack of importance of coastal Ulva again suggests that loggerheads remain only in oceanic areas off Peru. Moreover, the importance of mackerel and squid, the most common longline baits, suggests this species is the one interacting the most with longline fisheries and that cumulative effect of multiple interactions could have a detrimental effect in this population.</p> / Dissertation
306

Population modelling the yellow-footed rock-wallaby (petrogale xanthopus xanthopus) in space and time

Lethbridge, Mark January 2004 (has links)
Conservation biology is primarily concerned with the amelioration of species decline. The Yellow-footed Rock-wallaby (Petrogale xanthopus xanthopus) is a medium-sized Macropod that inhabits the semiarid rangelands of South Australia and New South Wales. Its conservation status is Vulnerable C2a(i). In this study, population modelling, spatially explicit habitat modelling and Population Viability Analysis (PVA) have been used to better understand the factors that affect the abundance and distribution of the P. x. xanthopus in South Australia. The processes that drive the population dynamics of a species operate at different scales. As such this research involves a collection of several inter-related and scale-specific empirical studies that provide insights about the population dynamics of P. x. xanthopus. Each of these studies captures environmental, demographic and behavioural process acting on the population at different scales. These include the analysis of relative abundance data derived from an aerial census, mark recapture sampling of demographic parameters in relation to rainfall patterns and a collection of habitat models derived at different scales using presence-absence data. Spatially explicit PVAs enable the population dynamics of a species to be modelled in space and time. Using these data, a PVA is conducted to explore and rank the importance of the factors that threaten this species and help guide their future monitoring and management. Movement is also a key issue when considering problems such as isolation and inbreeding. Given that little is known about the dispersal behaviour of this species, a range of different dispersal behaviours are also simulated in the PVA using random and non-random mating algorithms, to estimate the potential for inbreeding. / thesis (PhD)--University of South Australia, 2004.
307

On the ecology of invasive species, extinction, ecological history, and biodiversity conservation

Donlan, Charles Joseph. January 2008 (has links) (PDF)
Thesis (Ph. D.)--Cornell University, 2008. / Title from PDF t.p. (viewed on Apr. 20, 2009). Vita. Includes bibliographical references. Mode of access: World Wide Web.
308

The effects of herbivory on plant mating systems

Tindle, Joel David, Eubanks, Micky. January 2005 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
309

Avian response to field borders in the Mississippi Alluvial Valley

Conover, Ross Robert, January 2005 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Biological Sciences. / Title from title screen. Includes bibliographical references.
310

Vegetation Dynamics and Tree Radial Growth Response in Harvest Gaps, Natural Gaps, and Closed Canopy Conditions in Maine's Acadian Forest

Schofield, Darci A. January 2003 (has links) (PDF)
No description available.

Page generated in 0.0893 seconds