• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 338
  • 26
  • 16
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 448
  • 448
  • 142
  • 72
  • 57
  • 53
  • 48
  • 35
  • 34
  • 25
  • 23
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Does Additional Habitat Protection Facilitate the Recovery of Species Protected by the Endangered Species Act?

So, Rachel I. January 2014 (has links)
Earlier studies have found that endangered species recovery is only weakly associated with the tools enabled by the U.S. Endangered Species Act (ESA). With habitat loss often cited as a leading cause of species declines, we tested whether the recovery of ESA-listed species is instead associated with the protection of critical habitat (CH) by protected areas. We tested the relationship for 299 species using recovery indices derived from the biennial status reports to Congress (1990-2010), as well as NatureServe and IUCN population status data. We found no overall relationship between recovery and the extent to which CH is protected. However, restricting the analysis to recovering species, listed species with larger areas of protected (R2 = 0.158) or strictly protected (R2 = 0.194) CH fared better than species with less protected or strictly protected CH areas. Declining species (199 of 273 species studied) fared no better with more protected habitat. We conclude that the abatement of habitat loss alone does not necessarily facilitate recoveries for the majority of ESA-listed species. We also note that the weak relationships we observed in this study may be reflective of poor recovery status estimates.
332

Desempenho de projetos de gestão ambiental pública: parcerias entre o Estado de São Paulo e organizações sem fins lucrativos / Performance of environmental management projects: partnerships between the State of São Paulo and not-for-profit organizations

Thiago Hector Kanashiro Uehara 30 March 2010 (has links)
A coerência e a efetividade de iniciativas na área ambiental são centrais a projetos de gestão ambiental. Alguns projetos de gestão pública são desenvolvidos por meio de parceria entre Estado e organização sem fins lucrativos. Esta pesquisa tem por objetivo analisar características de organizações sem fins lucrativos parceiras do Estado e suas relações com o desempenho de projetos de gestão ambiental pública. A parceria entre Estado e organizações sem fins lucrativos se mostrou parcialmente colaborativa no cenário dos projetos estudados: o Estado planeja e controla as atividades de forma centralizada, restando às organizações sem fins lucrativos o papel de executoras com a função de intermediar Estado e comunidades rurais. Projetos de alto desempenho foram destacados segundo índice composto por indicadores de produtividade, de processo e de qualidade. As organizações executoras nem sempre declaram missão e são majoritariamente associadas à produção agropecuária ou às questões socioambientais e foram separadas em três grupos: as adhocráticas; as simples e burocráticas; e a divisionalizada. Organização executora de projeto de alta performance declara sua razão de existência, planeja pouco suas ações e tem comportamento formalizado. Destacam-se dois tipos organizacionais relacionados com alta performance de projetos deliberados pelo Estado: organização voltada à questão socioambiental que seja orgânica/ não-burocrática; e associação de produtores rurais que esteja sob amplo controle externo e que tenha processos de trabalho padronizados. / Coherence and effectiveness of initiatives in the environmental issues are central to environmental management projects. Some of them are developed through partnerships between State and not-for-profit organizations. This study aims to analyze the characteristics of not-for-profit organizations and its relations with project performance. In the context of the 15 projects reviewed, the partnership between State and not-for-profit organizations is partly collaborative: planning and controlling are directed by the State and the implementing role is assigned for the not-for-profit organizations. High-performance projects were highlighted due to an evaluation of indicators of productivity, process and quality. Implementing organizations do not always exhibit their mision statements and they are mostly associated to agricultural production or environmental issues. Organization that implements high-performance projects presents its reason for existence, do not plan too much and has a formalized behavior. In addition, two organizational types related to high-performance projects deliberated by the State are emphasized: organization devoted to socioenvironmental issues that is organic / non-bureaucratic ; and farmers association with standardized work processes under extensive external control.
333

A Preliminary Flora for Las Cienegas National Conservation Area and Studies on the Life History of the Endangered Huachuca Water Umbel

January 2020 (has links)
abstract: Las Cienegas National Conservation Area (LCNCA), located in southeastern Arizona, is a place of ecological and historical value. It is host to rare native, threatened and endangered fauna and flora. as well as the site of the oldest operating ranch in the state. The first chapter of this thesis provides a preliminary flora of vascular plants at LCNCA assembled from field collections, photographs and herbarium specimens, and published through the online database SEINet. This preliminary flora of LCNCA identified 403 species in 76 families. Less than 6% of the flora is non-native, perennial forbs and grasses are the most abundant groups, and over a third of species in the checklist are associated with wetlands. LCNCA has been the target of adaptive management and conservation strategies to preserve its biotic diversity, and results from this study will help inform actions to preserve its rare habitats including cottonwood willow forests, mesquite bosques, sacaton grasslands, and cienegas. The second chapter investigates poorly understood aspects of the life history of the endangered Huachuca Water Umbel (Lilaeopsis schaffneriana subsp. recurva. Apiaceae) (hereafter HWU). This wetland species occurs in scattered cienegas and streams in southeastern Arizona and northern Sonora, Mexico. Three studies were conducted in a greenhouse to investigate seed bank establishment, seed longevity, and drought tolerance. A fourth study compared the reproductive phenology of populations transplanted at LCNCA to populations transplanted at urban sites like the Phoenix Zoo Conservation Center and the Desert Botanical Garden (DBG). Results from the greenhouse studies showed that HWU seeds were capable of germinating 15 years in a dormant state and that HWU seeds are present in the seed banks at sites where populations have been transplanted. Also, greenhouse experiments indicated that colonies of HWU can tolerate up to 3 weeks without flowing water, and up to 2 weeks in dry substrate. Transplanted populations at LCNCA monitored in the fourth study produced a higher abundance of flowers and fruit relative to urban sites (i.e. DBG) suggesting that in-situ conservation efforts may be more favorable for the recovery of HWU populations. Findings from these studies aim to inform gaps in knowledge highlighted in USFWS recovery plan for this species. / Dissertation/Thesis / Masters Thesis Plant Biology and Conservation 2020
334

Analysis of Genetic Diversity and Clarification of Species Boundaries in Echinomastus erectocentrus var. acunensis and Close Relatives

January 2020 (has links)
abstract: Echinomastus erectocentrus (J.M. Coulter) Britton & Rose var. acunensis (W.T. Marshall) Bravo, the Acuña cactus, is a small, single-stemmed spherical cactus with a restricted distribution across the Sonoran Desert in southern Arizona and into northern Sonora, Mexico. Populations of E. erectocentrus var. acunensis are threatened by loss of habitat, climate change, predation, and border related impacts. Due to the severity of these threats and shrinking population sizes, E. erectocentrus var. acunensis was federally listed as endangered by the United States Fish and Wildlife Service in 2013. The varieties of Echinomastus erectocentrus, E. erectocentrus var. acunensis and E. erectocentrus var. erectocentrus (J.M. Coulter) Britton & Rose, share many morphological characteristics that make them difficult to distinguish from one another. Echinomastus johnsonii (Parry ex Engelm.) E.M. Baxter, a presumed closely related species, also has a high level of morphological overlap that further complicates our understanding of species boundaries and detailed morphological data for these three taxa indicate a geographical cline. The goal of this project is to document the genetic diversity within and among populations of E. erectocentrus var. acunensis, and its close relatives E. erectocentrus var. erectocentrus and E. johnsonii. To accomplish this, populations of E. erectocentrus var. acunensis, E. erectocentrus var. erectocentrus, E. johnsonii and the outgroup Echinomastus intertextus (Engelm.) Britton & Rose were sampled. Deoxyribonucleic acid (DNA) was extracted, and data were collected for nine microsatellite regions developed specifically for these taxa, and two microsatellite regions developed for Sclerocactus, a closely related genus. Standard population genetic measures were used to determine genetic variation and structure, and this observed genetic differentiation was then compared to the current morphological understanding of the group. These analyses help improve the knowledge of the genetic structure of E. erectocentrus var. acunensis and inform the understanding of species boundaries and evolutionary relationships within the group by revealing genetic distinctiveness between all four taxa and hybrid populations between the two varieties. This information also reveals patterns of gene flow and population locations that have the highest conservation priority, which can be incorporated into efforts to conserve and protect this endangered species. / Dissertation/Thesis / Masters Thesis Plant Biology and Conservation 2020
335

Congruence and within-season variation in floral visitation and pollen transport networks in Southern Appalachia plant-pollinator communities

Barker, Daniel A. 12 April 2019 (has links)
Previous studies of plant-pollinator interactions have relied on the use of floral visitation data. Although, this may be insufficient to fully characterize the diversity and strength of plant-pollinator interactions. By using pollen transport data (i.e. pollen on pollinators), new insights can be gained on the structure and function of plant-pollinator communities. Yet studies that characterize and compare pollen-transport with floral-visitation networks are scarce. Furthermore, the strength and frequency of plant-pollinator interactions can vary across temporal scales. Although, monthly and within-day variation in network structure has been little studied. By evaluating variation in network structure across these biologically relevant time scales we will gain a better understanding of the factors that shape plant-pollinator communities. Here, we build plant-pollinator interactions networks based on floral visitation and pollen transport data by observing, collecting and sampling pollen from floral visitors in a southern Appalachian floral community. We aim to 1) compare the congruence of plant-pollinator networks built on floral visitation and pollen transport data and 2) evaluate within season and within-day variation in plant-pollinator network structure. To assess floral visitation and to quantify pollen transport, four 1x40m transects were set up at the study site. Morning collections were conducted between 8:00 AM and 3:00 PM twice per week while afternoon collections took place once per week between 3:01 PM and 5:00 PM over 20 non-consecutive days. All flower visitors observed interacting with a flower’s reproductive structures (i.e. searching for pollen and nectar) were collected.All collected pollinators were processed for surface pollen loads by dabbing the body with a 3x3mm fuschin jelly cube. Each area of the body was dabbed three times to standardize sampling. Identification and quantification of pollen was done using a compound light microscope. Data was then analyzed with the “bipartite” package of R to create bipartite plant-pollinator networks. Procrustes analysis was used to identify differences in network structure. Preliminary results show that the structure of floral visitation and pollen transport networks are significantly different from each other (P <0.01). Pollen-transport network size is almost four times larger (496 links) compared to the floral-visitation network (109 links). Species in the pollen transport network tend to be more connected (connectance = 2.3) and have five times more links per species on average (5.22 links) than floral visitation networks (connectance = 1.1, links = 1.8). Within-season and within-day differences in network structure are currently being evaluated. Our results so far show that pollen transport networks at our study site captured 78% more unique interactions and, thus, provide more accurate network structure. Interpretation of pollen transfer versus floral visitation networks can have important implications for our understanding of community-level functions such as their resilience and stability.
336

The impact of South Africa's largest photovoltaic solar energy facility on birds in the Northern Cape, South Africa

Visser, Elke January 2016 (has links)
Renewable energy is a promising alternative to alleviating fossil fuel-based dependencies, but its development can require a complex set of environmental trade-offs for bird communities in the area, ranging from effective and physical habitat loss to direct collision-related mortality. The wide variation in the nature and significance of predicted impacts of utility-scale photovoltaic (PV) facilities on birds, and the low levels of confidence attending these predictions, has emphasised the need for scientific research. This study assesses the risks to bird populations and guilds at one of South Africa's largest PV developments. Firstly, in order to identify functional and structural changes in bird communities in and around the development footprint, bird transect data were gathered, representing the solar development, boundary, and untransformed landscape. Secondly, to assess the risk of collision mortality with solar-related infrastructure, representative samples (core vs. edge) were surveyed for bird carcasses and other signs of collision for three months covering 20-30% of the facility at search intervals of 4, 7 and 14 days. In order to account for potential biases in carcass detection, searcher efficiency and carcass persistence trials were conducted. The distribution of birds in the landscape changed, from a shrubland to open country and grassland bird community, in response to changes in the distribution and abundance of habitat resources such as food, water and nesting sites. These changes in resource availability patterns were detrimental to some bird species and beneficial to others. Shrubland specialists, such as the black-chested prinia (Prinia flavicans) and chestnut-vented tit-babbler (Parisoma subcaeruleum), appeared to be negatively affected by the presence of the PV facility. In contrast, open country/grassland and generalist species, especially species such as the Cape sparrow (Passer melanurus) and familiar chat (Cercomela familiaris), were favoured by its development. Utility-scale PV facilities inevitably will not substitute for the natural habitats they have replaced, but might offer opportunities for climate protection that do not necessarily conflict with nature conservation. Monitoring success of avian mortality was significantly influenced by variation in detection rates by size class (60 and 95% for birds <100 g and >100 g, respectively) and the location of carcasses relative to the solar panel units (65 and 90% for birds adjacent and under the units, respectively) as well as decreasing persistence rates per search interval (57, 53, and 40% after 4, 7, and 14 days, respectively). Only injuries associated with non-fatal collision of large-bodied birds with the underside of the panels and entrapment between fencing could be concluded with reasonable certainty. An extrapolated fatality estimate of 4.53 fatalities.MW⁻¹.yr⁻¹ (95% CI 1.51-8.50), short study period, and lack of comparable results from other sources made it difficult to provide a meaningful assessment on avian mortality at PV facilities. Despite these limitations, the few bird fatalities that were recorded might suggest that there is no significant link with collision-related mortality at the study site. In order to fully understand the risk of solar energy development on birds, further collation and analysis of data from solar energy facilities across spatial and temporal scales, based on scientifically rigorous research designs, is required.
337

Intraspecific drivers of variation in bat responses to white-nose syndrome and implications for population persistence and management

Gagnon, Marianne January 2021 (has links)
Emerging infectious diseases of wildlife are among the greatest threats to biodiversity. Indeed, when pathogens are introduced into naïve host populations, they can impose novel selective pressures that may cause severe host declines or even extinction. However, disease impacts may vary both within and among host species. Thus, one of the key goals for management is to identify factors that drive variation in host susceptibility to infection, as they may improve our understanding of hosts' potential to develop disease resistance and/or tolerance and inform conservation strategies aimed at facilitating host persistence. For instance, Pseudogymnoascus destructans (Pd) - an invasive pathogenic fungus that causes white-nose syndrome (WNS) in hibernating bats - is highly virulent, has killed millions of bats in North America, and continues to spread at an alarming rate. Yet, the continued persistence of bat colonies in contaminated areas despite initial mass mortality events suggests variation in survival among infected individuals. I thus aimed to better understand intraspecific drivers of variation in bat susceptibility to WNS and their implications for population persistence and management in affected areas. Specifically, my objectives were to: 1) evaluate the extent to which variation in hibernaculum microclimate temperature and humidity affects Pd infection severity and disease progression in affected bats during hibernation, 2) compare how bats from colonies that vary in duration of exposure to Pd and from different age classes behaviorally respond to the infection, and examine how these behavioral changes affect host fitness and 3) model the population dynamics of remnant bat populations to assess the likeliness of persistence and the potential effectiveness of management interventions in affected colonies. I addressed these objectives through field research, experimental infection studies, and demographic modeling of the little brown myotis (Myotis lucifugus). In my dissertation, I first provide causal evidence of environmentally-driven variation in pathogen growth and infection severity on bats in the field. Both warmer and more humid microclimates contribute to the severity of the infection by promoting the production of conidia, the erosion of wing tissues, and, therefore, the transmission potential and virulence of Pd. I then document potential mechanistic links between Pd-induced behavioral change and host fitness. Higher infection levels, independent of bats' past exposure to Pd or age class, may cause individuals to groom longer, prolong euthermic arousals, accelerate the depletion of fat reserves, and ultimately increase mortality risk. Finally, I predict that populations will face a high risk of extirpation in the next decade or two if no management action is taken, but that interventions such as environmental control of Pd and hibernaculum microclimate manipulation can prevent short-term population collapse in remnant bat populations. Together, these studies provide key, mechanistic insight into the pathology of WNS and the probability of persistence of affected bat colonies, while highlighting the importance of prioritizing winter habitat preservation and enhancement for the conservation of hibernating bats. / Biology
338

Clonality And Genetic Diversity In Polygonella Myriophylla, A Lake Wales Ridge Endemic Plant

Metzger, Genevieve 01 January 2010 (has links)
Although capable of sexual reproduction, many plants also rely heavily on clonal reproduction. The formation of multiple, physiologically-independent units with the same genotype has important implications for spatial genetic structure and genetic diversity in these plants. The endangered scrub-dwelling perennial, Polygonella myriophylla is known to reproduce both sexually and clonally but no study to date has been able to investigate the spatial genetic patterns that occur in this species. I use microsatellite markers to investigate questions about clonal structure and genetic diversity in five populations of P. myriophylla and address some of the implications of my findings for conservation of this species: Overall, I find that 57% of sampled clusters of P. myriophylla are composed of a single genet (genetic individual) with multiple physiological units (ramets) while the remainder are made up of two or more genets. I found differences in both clonal reproduction and genetic diversity among populations. I also found evidence of limited gene flow even over small spatial scales (less than 10 km) and for at least 4 genetic clusters occurring within the species range. Despite high levels of genetic diversity overall, there is evidence of reduced genetic diversity in two populations My results suggest that high levels of clonality may be important in maintaining genetic diversity in P. myriophylla. I also provide evidence that dirt roadsides may not represent a refuge for this species.
339

Searching for a Salamander: Distribution and Habitat of the Common Mudpuppy (Necturus maculosus) in Southeast Ohio Using Environmental DNA

Collins, Merri K. 14 September 2017 (has links)
No description available.
340

New observation of a highly aggressive disease of hibernating Myotis lucifugus bats

Franklin, Kelly, 0000-0003-2677-121X January 2020 (has links)
Bats are crucial to ecological function and provide key ecosystem services to people but face a variety of significant threats. One current threat to North American bats is white-nose syndrome (WNS), a disease caused by the invasive fungal pathogen Pseudogymnoascus destructans (Pd) that has killed millions of hibernating bats across the continent. Remnant populations of affected bat species persist but are so depleted that they may now be highly vulnerable to new threats, or to the synergistic effects of multiple existing threats. The emergence of novel or opportunistic pathogens in bat hosts is a particular concern for the survival of these small, isolated colonies. Apart from studies of WNS and zoonotic pathogens of humans, however, bat diseases remain poorly understood. In this paper, I describe the pathology of a new, highly aggressive bat disease affecting hibernating little brown myotis (Myotis lucifugus) and identify candidate microbes as possible causative agents. The pathological signs that were observed diverged from those of WNS, and included blue fluorescence in the wings when trans-illuminated with ultraviolet light, and the rapid development of wing necroses and mortality within weeks of the onset of hibernation. Pathology, wing swab cultures, post-mortem analyses, and hemolysis testing identified an array of candidate species, but suggest that a possible cause is a polymicrobial infection involving two etiological agents – Trichosporon yeast and Serratia bacteria. Both species have been documented as part of the mycobiota and microbiota of healthy bats, and cave environments. They are also opportunistic pathogens, known to cause infection in other wild animals and immunocompromised humans. Opportunistic pathogens have been increasingly implicated as a cause of mass mortality events in wildlife. The disease identified here has, to my knowledge, not previously been described, and could represent a new threat to North American bats, compounding concerns for populations facing an already precarious situation. / Biology

Page generated in 0.082 seconds