• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 40
  • 20
  • 17
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 253
  • 94
  • 55
  • 43
  • 42
  • 37
  • 25
  • 23
  • 22
  • 18
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Groundwater flow and contaminant transport in an alluvial aquifer: in-situ investigation and modelling of a brownfield with strong groundwater - surface water interactions

Batlle Aguilar, Jordi 19 September 2008 (has links)
The continuous demand on new residential and economic areas of the modern society has to face up with problems posed by polluted sites related to former industrial activities, typically located in suburbs areas. These sites, known as brownfields, are often located nearby navigable rivers to facilitate transport operations of industrial manufacturing, which increase their potential environmental threat due to the possible migration of pollutants in groundwater to surface water bodies through groundwater discharge. In this context, the objective of this research, performed in the scope of the FP6-IP AquaTerra project, was to contribute to a better assessment of the risk of groundwater contaminant dispersion for a brownfield located next to the Meuse River (Belgium), in a context where strong groundwater - surface water interactions prevail. The brownfield of interest corresponds to the site of the former coke factory of Flémalle. Resulting from industrial activities, soil and groundwater located in the alluvial aquifer are heavily contaminated with various types of organic (BTEX, PAHs, mineral oils...) and inorganic (As, Zn, Cd...) pollutants. To do so, detailed characterisation campaign was performed, consisting of, on the one hand, classical field experiments such as pumping tests, injection tests and tracer experiments; on the other hand, advanced and original field experiments such as detailed monitoring of groundwater - surface water interaction and dynamics, and the development and application of an innovative tracer technique, the Finite Volume Point Dilution Method (FVPDM), used to quantify and monitor groundwater fluxes. Monitoring and field works data was subsequently used to develop and calibrate a groundwater flow model using the finite difference code MODFLOW, with an automatic parameter estimation approach based on an original combined regional scale (zonation) and local scale (pilot points) approach. A transport model was also developed using MT3DMS and calibrated using tracer experiments performed in the brownfield. This groundwater flow and transport model was used to better quantify the dynamics of groundwater - surface water interactions and to model various scenarios of contaminant dispersion through the aquifer - river system. For these scenarios, benzene was considered because it is one of the main pollutants encountered in the site, its large solubility and mobility in groundwater and its acute toxicity. These scenarios were established considering various groundwater flow conditions (steady state vs. transient) and various hydrodispersive processes possibly affecting the mobility of benzene in groundwater, namely advection, hydrodynamic dispersion, sorption - desorption and, as evidenced by the research results of the University of Neuchâtel (Switzerland), benzene degradation under sulphate reducing conditions. These simulations indicate that benzene attenuation is mainly controlled by ongoing benzene degradation processes, aquifer heterogeneity and river stage fluctuations. Based on this analysis, the risk of benzene dispersion is low, and monitored natural attenuation (MNA) is a valuable option with (1) monitoring benzene at control planes downstream from the sources; (2) further investigation on risk of sulphate depletion in the alluvial aquifer; and (3) further investigation on mobilisation/immobilisation of heavy metals related to dynamics of organic pollutant plumes.
162

Contaminant fate and transport analysis in soil-plant systems

Goktas, Recep Kaya 20 January 2011 (has links)
The main objective of this study is to develop a modeling methodology that facilitates incorporating the plant pathway into environmental contamination models recognizing the fact that plants are dynamic entities that regulate their life cycle according to natural and anthropogenic environmental conditions. A modeling framework that incorporates the plant pathway into an integrated water flow and contaminant transport model in terrestrial systems is developed. The modeling framework is aimed to provide a tool to analyze the plant pathway of exposure to contaminants. The model developed using this framework describes the temporal and spatial variation of the contaminant concentration within the plant as it is interacting with the soil and the atmosphere. The first part of the study focuses on the integration of the dynamics of water and contaminant distribution and plant related processes within the vadose zone. A soil-plant system model is developed by coupling soil-water flow, contaminant transport, plant life-cycle, and plant pathway models. The outcome unifies single media continuous models with multimedia compartmental models in a flexible framework. The coupling of the models was established at multiple interfaces and at different levels of solution steps (i.e. model development phase vs. numerical solution phase). In the second part of the study, the soil-plant system model is extended to cover large spatial areas by describing the environmental system as a collection of soil-plant systems connected through overland flow and transport processes on the ground surface and through lateral interactions in the subsurface. An overland flow model is integrated with the previously coupled model of unsaturated zone soil-water flow and plant life-cycle by solving the flow model equations simultaneously within a single global matrix structure. An overland / subsurface interaction algorithm is developed to handle the ground surface conditions. The simultaneous solution, single-matrix approach is also adopted when integrating the overland transport model with the previously coupled models of vadose zone transport and plant pathway. The model developed is applied to various environmental contamination scenarios where the effect of the presence of plants on the contaminant migration within environmental systems is investigated.
163

Understanding the partitioning and concentration of trace elements in the plant organs of some food crops : influence of the plant allometry and of the growth stage / Compréhension de la répartition et de la concentration des éléments traces dans les organes de plantes cultivées pour l'alimentation : influence de l'allométrie et du stade de développement

Liñero Campo, Olaia 29 April 2016 (has links)
Le travail est axé sur l'accumulation d'éléments chimiques essentiels et non essentiels avec une attention particulière pour les parties des consommées, en lien avec la qualité sanitaire des produits alimentaires. Le travail de thèse est divisé en deux grandes parties. La première porte sur une expérimentation en plein champ où des plantes de blettes et de tomates ont été cultivées du stade plantules jusqu'à la maturité pendant 5 mois avec des pratiques agricoles conventionnelles ou biologiques. Les plantes ont été récoltées à 6 stades différents de croissance et nous avons déterminé la concentration des organes végétaux pour 27 éléments chimiques. L'objectif était d'étudier la répartition des éléments entre les organes en fonction de l'âge de la plante et des pratiques culturales.La seconde partie de la thèse a été consacrée à la compréhension et à la modélisation de la répartition du cadmium (Cd) chez le tournesol aux stades reproducteurs. Des plantes ont été cultivées du stade plantule jusqu'à la maturité, en solution nutritive avec une faible concentration en Cd cohérente avec les expositions aux champs. Durant la phase reproductive, cinq échantillonnages ont été effectués pour comprendre la répartition du Cd entre les organes ainsi que l'origine du Cd des graines (prélèvement racinaire versus remobilisation à partir d'autres organes). Au stade du bouton floral et pendant le remplissage des graines, le devenir du Cd récemment absorbé par les racines a été suivi et modélisé par traçage isotopique avec du 111Cd. Les rôles de la transpiration et de l'allométrie entre organes ont été plus particulièrement examinés. / This work is focuded on the accumulation of essential and non-essential elements, paying a special attention to the dible part of the plants, in terms of food safety and human health. The thesis work has been divided in two main parts. The first one is related to a field expeiment performed in open-air plots, where Swiss chards and tomato plants were grown from seedlings to maturity in a natural soil during five months, using organic or conventional agricultural practices. Plants were harvested at six different growth satges and the total concentrations of 27 elements were measured in all plants organs. The objective was to study the partitioning of elements between the plant organs, depending on the plant age on the cultivation practice. The second part of the thesis is devoted to the understanding and modelling of the partitioning of cadmium (Cd) in sunflowers at the reproductive stages. Sunflowers wre grown in nutrient solution at low Cd availability consistent with thaht found in the field, from germination toi maturity. During the reproductive period, five samplings were carried out to investigate the partitioning of the total Cd between plant organs and the origin of the Cd allocated to seeds (root uptake vs; remobilization from other plant organs). At the flower bud and grain filling stages, the partitioning of the Cd recently taken up between the different plant organs was followed and modelled by exposing several plants for the three days to a 111Cd enriched nutrient solution. The roles of the transpiration and of the plant allometry were specially investigated.
164

Evaluation expérimentale et modélisation de la contamination induite par laser sur les optiques spatiales / Experimental evaluation and modeling of laser-induced contamination on space optics

Gebrayel El Reaidy, Georges 06 December 2018 (has links)
Dans le domaine du spatial, des sources laser à forte puissance sont déjà employées dans le cadre d’activités scientifiques. On peut citer par exemple l’analyse à distance de la composition chimique des roches sur Mars par LIBS (Laser Induced Breakdown Spectroscopy) et le sondage atmosphérique par Lidar (Light Detection And Ranging) pour l’amélioration des prédictions météorologiques. Cependant l’endommagement laser (LID) et la contamination induite par laser (LIC) sur les composants optiques des systèmes demeurent des risques difficiles à anticiper. En ce qui concerne la LIC, l’interaction du flux laser avec les optiques de l’instrument en orbite peut provoquer des dégradations irréversibles, liées à la création de dépôts organiques absorbants qui peuvent induire des endommagements laser dans le temps. L’effet LIC reste donc aujourd’hui un obstacle au développement de sources laser de puissance pour les applications sans maintenance possible et possédant des durées de vie raisonnables. Une étude paramétrique de l’effet LIC est proposée dans cette thèse afin de progresser dans la compréhension des mécanismes mis en jeu / Since their first implementation in satellite systems, lasers have proven to be very versatile devices in space applications. They are key components of a variety of space-based instruments performing altimetry, light detection and ranging, laser sensing, and laser communication. However, laser induced damage (LID) and laser-induced contamination (LIC) of optical surfaces are a major failure risk for space-bound laser instruments. Regarding the LIC effect, the interaction of the laser with slight traces of organic compounds on the optical surface leads to the formation of a highly absorbing nanometric deposit on the laser footprint. Under certain conditions, this deposit may cause laser induced damage. Today, mainly the LIC effect remains an obstacle for the development of reliable and long-living spaceborne lasers. A parametric study concerning this effect was carried out in this work in order to enhance our understanding of the various mechanisms involved
165

Laboratory and field investigation of chlorinated solvents remediation in soil and groundwater

Santharam, Sathishkumar January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Larry E. Erickson / Chlorinated solvents are the second most ubiquitous contaminants, next to petroleum hydrocarbons, and many are carcinogens. Tetrachloroethylene or perchloroethene (PCE) has been employed extensively in the dry cleaning industry and carbon tetrachloride (CT) has been used as a fumigant in grain storage facilities. In this work, remediation feasibility studies were conducted by mesocosm experiments; a chamber was divided into six channels and filled with soil, and plants were grown on top. Each channel was fed with contaminated water near the bottom and collected at the outlet, simulating groundwater flow conditions. The contaminants were introduced starting from March 12, 2004. PCE was introduced at a concentration of about 2 mg/L ([similar to]12 [Mu]moles/L) in three channels, two of them with alfalfa plants and the other with grass. CT was introduced at a concentration of about 2 mg/L ([similar to]13 [Mu]moles/L) in the other three channels, two of them with alfalfa plants and the other with grass. After the system had attained steady state, the concentrations of PCE and CT at inlet and outlet were monitored and the amount of PCE and CT disappearing in the saturated zone was studied. Since no degradation products were found at the outlet after about 100 days, one channel-each for PCE and CT (with alfalfa) was made anaerobic by adding one liter of 0.2 % glucose solution. The glucose solution was fed once every month starting from July 1, 2004 and continued until February 2005. From October 1, 2004, one liter of 0.1 % emulsified soy oil methyl esters (SOME) was fed to two other channels (with alfalfa), one exposed to PCE and another exposed to CT. The SOME addition dates were the same as that for glucose. The outlet liquid of the channel fed with PCE and SOME started to contain some of the degradation compounds of PCE; however, the extent of degradation was not as great as that of the glucose fed channel. No degradation compounds were observed in the outlet solution of the channel (grass grown on top) in which no carbon and energy supplements were added. Similar trend was observed in the CT fed channels also. KB-1, a commercially available microbial culture (a consortium of dehalococcoides) that degrades dichloroethene (DCE), was added through the inlet of the PCE fed channels, but this did not lead to sufficient conversion of DCE. Addition of KB-1 at well 3, located approximately in the middle of the channel, had a greater impact in the degradation of DCE, in both glucose and SOME amended channels, compared to addition at the inlet. KB-1 culture added to the channel was active even 155 days later, suggesting that there is sustainable growth of KB-1 when provided with suitable conditions and substrates. A pilot field study was conducted for remediation of a tetrachloroethylene (PCE) contaminated site at Manhattan, KS. The aquifer in the pilot study area has two distinct zones, termed shallow zone and deep zone, with groundwater velocities of about 0.3 m/day and 0.1 m/day. Prior to the pilot study, PCE concentration in groundwater at the pilot study area was about 15 mg/L (ppm) in the deep zone and 1 mg/L in the shallow zone. Nutrient solution comprising soy oil methyl esters (SOME), lactate, yeast extract and glucose was added in the pilot study area for biostimulation, on August 18, 2005. Potassium bromide (KBr) was added to the nutrient solution as a tracer. PCE was converted to DCE under these conditions. To carry out complete degradation of PCE, KB-1, a consortium of Dehalococcoides, and a second dose of nutrient solution were added on October 13, 2005. After addition of KB-1, both PCE and DCE concentrations decreased. Nutrients were again injected on March 3, 2006 (with KBr) and on August 1, 2006. The total chlorinated ethenes (CEs) have decreased by about 80 % in the pilot study area due to bioremediation. Biodegradation of CEs continued for a long time (several months) after the addition of nutrients. The insoluble SOME may be retained at the feeding area and provide a long time source of electron donors. Biostimulation and bioaugmentation of PCE contaminated soil and groundwater was evaluated in the laboratory and this technique was implemented successfully in the pilot field study. Modeling of the tracer study was performed using an advection-dispersion equation (ADE) and traditional residence time distribution (RTD) methods. The dispersion coefficient, groundwater velocity and hydraulic conductivity were estimated from the experimental data. The groundwater velocities vary from 1.5 cm/d to 10 cm/d in the deep zone and 15 cm/d to 40 cm/d in the shallow zone. The velocities estimated from the 2004 tracer study and 2005 tracer study were higher compared to the velocity estimated from the 2006 tracer study, most likely because of microbial growth and product formation that reduced the hydraulic conductivity. Based on data collected from several wells the hydrologic parameter values obtained from tracer studies appear to vary spatially.
166

Conjugate heat transfer effects on gas turbine film cooling : including thermal fields, thermal barrier coating, and contaminant deposition

Stewart, William Robb 07 October 2014 (has links)
The efficiency of natural gas turbines is directly linked to the turbine inlet temperature, or the combustor exit temperature. Further increasing the turbine inlet temperature damages the turbine components and limits their durability. Advances in turbine vane cooling schemes protect the turbine components. This thesis studies the conjugate effects of internal cooling, film cooling and thermal barrier coatings (TBC) on turbine vane metal temperatures. Two-dimensional thermal profiles were experimentally measured downstream of a single row of film cooling holes on both an adiabatic and a matched Biot number model turbine vane. The measurements were taken as a comparison to computational simulations of the same model and flow conditions. To improve computational models of the evolution of a film cooling jet as it propagates downstream, the thermal field above the vane, not just the footprint on the vane surface must be analyzed. This study expands these data to include 2-D thermal fields above the vane at 0, 5 and 10 hole diameters downstream of the film cooling holes. In each case the computational jets remained colder than the experimental jets because they did not disperse into the mainstream as quickly. Finally, in comparing results above adiabatic and matched Biot number models, these thermal field measurements allow for an accurate analysis of whether or not the adiabatic wall temperature was a reasonable estimate of the driving temperature for heat transfer. In some cases the adiabatic wall temperature did give a good indication of the driving temperature for heat transfer while in other cases it did not. Previous tests simulating the effects of TBC on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This new model was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, a prediction technique of the overall effectiveness with TBC was evaluated. / text
167

Characterizing Non-Wetting Fluid in Natural Porous Media Using Synchrotron X-Ray Microtomography

Narter, Matthew January 2012 (has links)
The objective of this study was to characterize non-wetting fluid in multi-phase systems comprising a range of fluid and porous medium properties. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of fluids in natural porous media. Images were processed to obtain quantitative measurements of fluid distribution, morphology, and interfacial area. Column-flooding experiments were conducted with four enhanced-solubilization (ES) solutions to examine their impact on entrapped organic liquid. Mobilization caused a change in organic-liquid morphology and distribution for most experiments. The effect of ES-solution flooding on fluid-fluid interfacial area was similar to that of water flooding. Organic-liquid mobilization was observed at total trapping numbers that were smaller than expected. This was attributed to pore-scale mobilization of blobs that were re-trapped prior to being eluted from the column. Pore-scale mobilization was also observed during water-flooding experiments for which trapping numbers varied over several orders of magnitude. Water-flooding and surfactant-flooding experiments were compared to investigate the impact of interfacial tension, viscosity, and fluid velocity on entrapped organic liquid. For similar total trapping numbers, flooding at larger velocities appeared to have a greater effect on the distribution of non-wetting blobs than lowering interfacial tension or increasing the viscosity of the wetting fluid. The fluid-normalized interfacial area was generally independent of the total trapping number. Finally, the impact of fluid type on the interfacial area between different pairs of non-wetting fluids was investigated during drainage and imbibition in four natural porous media. Interfacial areas were similar among all fluid pairs for a given porous medium. They were also similar for drainage and imbibition conditions. The maximum specific interfacial area (A(m)) was determined to quantify the magnitude of interfacial area associated with a given porous medium. The value of A(m) was larger for the media with smaller median grain diameters. Therefore, physical properties of the porous medium appear to have a greater influence on the magnitude of specific total interfacial area for a given saturation than fluid properties or wetting-phase history.
168

Proudění a difúze uvnitř městské zástavby / Flow and diffusion characteristics inside the urban area

Chaloupecká, Hana January 2012 (has links)
Title: Flow and diffusion characteristics inside the urban area Author: Hana Chaloupecká Department: Department of meteorology and enviroment protection Supervisor: prof. RNDr. Zbyněk Jaňour, DrSc., IT AS CR, v. v. i. Supervisor's e - mail: janour@it.cas.cz Abstract: Uniqueness of different towns, consists of various shapes of buildings. The main topic of this work is to compare concentration diffusion within groups of buildings of various types. We pursued houses made of single blocks of two different lengths - they were placed parallel or in courtyards. For research of pollution diffusion within the housing estates a method of physical modelling has been used. For this purpose we summarized a theory of atmospheric boundary layer and physical modelling at first. Then we pursued experiments. Measuring took place in a model in scale 1 : 300 inside an aerodynamic wind tunnel of the Institute of Thermomechanics AS in Nový Knín. We checked out the requirements placed on similarity of the real boundary layer and boundary layer modelled in the tunnel. By the measuring of concentration in urban areas we weren't watching a plume from the pollution source but we were studying an inversion task. We measured concentrations in two fixed points from different point sources inside the defined areas. A sensitivity of...
169

Investigations of Pile Foundations in Brownfields

Satyamurthy, Ranjan 20 May 2005 (has links)
"Brownfields" are real estate property with subsurface or surface contamination. The redevelopment of Brownfields is required to clean, improve and protect the environment. Piles foundations are often used in Brownfields to support structures. Regulators are concerned about the environmental safety of pile foundations in Brownfields sites. Piling in Brownfields may lead to transport of contaminants from the contaminated region to the underground aquifers. The purpose of this investigation is to determine the potential for contaminant transport due to pile foundation in Brownfields. This investigation is an extension of previous research conducted at the University of New Orleans and ascertains the potential for contaminant transport from concrete piles of different shape, depth of penetration and method of installation. The results of large scale model tests and Finite Element studies are presented. The investigation indicates the possibility of contamination only in selected cases of piles.
170

[en] EVALUATION OF THE TRANSPORT PARAMETERS OF A BIOCOLLOID THROUGH A SATURATED SAND / [pt] AVALIAÇÃO DOS PARÂMETROS DE TRANSPORTE DE UM BIOCOLÓIDE ATRAVÉS DE UMA AREIA SATURADA

LILIANA ANDREA VILLEGAS SIERRA 27 May 2019 (has links)
[pt] Neste trabalho são avaliados os parâmetros de transporte da bactéria Escherichia coli ATCC11229, microrganismo indicador de contaminação fecal, através de colunas de areia de quartzo saturadas. Com este propósito foi desenvolvido o equipamento para a execução dos ensaios Advecção-Dispersão-Sorção (ADS), com injeção contínua de uma suspensão bacteriana em água destilada em uma concentração inicial de 10 (8) bactérias/mL, por até doze horas em temperatura ambiente e sob condições que permitiram desprezar os efeitos do crescimento e decaimento dos microrganismos. Para a determinação dos parâmetros de transporte foram executados ensaios microbiológicos, ensaios de batelada e oito ensaios ADS para diferentes valores de gradiente hidráulico. Os ensaios de batelada mostraram uma baixa adsorção bactéria-solo nas condições avaliadas. As curvas de chegada obtidas nos ensaios ADS, mostraram elevados valores para o fator de retardamento entre três e nove, variando proporcionalmente com o incremento de gradiente hidráulico. Os valores de dispersão hidrodinâmica variaram entre 1,44x10(-2) cm(2)/min e 5,47x10(-2) cm(2)/min. Os resultados dos ensaios sugerem que os processos físico-químicos têm pouca influência no transporte deste microrganismo em areia de quartzo, enquanto que o processo de filtração mecânica, forças hidrodinâmicas, a forma e distribuição de tamanho dos grãos parecem explicar mais adequadamente o comportamento das curvas de chegada. / [en] This study deals with the assessment of the transport parameters of the Escherichia coli ATCC11229 bacteria, a fecal contamination indicator, through saturated quartz sand columns. With this purpose, it was developed an equipment to carrying out Advection-Dispersion-Sorption (ADS) experiments, with continuous input of bacterial distilled water suspension at an influent concentration of 10(8) cell/mL for about twelve hours, at environmental temperature and under conditions that allow disregard the effect of the growth and decay of the microorganisms. Microbiological experiments, batch tests, and eight ADS experiments at several hydraulic gradient values, were executed for determine the transport parameters. The batch tests indicated a low bacterium-soil adsorption under evaluated conditions. The breakthrough curves, obtained by ADS experiments, showed high values for the retardation factor, ranged from three to nine with increasing the hydraulic gradient. The hydrodynamic dispersion values ranged between 1,44x10(-2)cm(2)/min and 5,47x10(-2) cm(2)/min. The results of the experiments suggested that the physical-chemical processes have a little influence on the transport of this microorganism in quartz sand, whereas the straining process, hydrodynamic forces, the shape and grain distribution, would can explain more appropriately the behavior of the breakthrough curves.

Page generated in 0.0563 seconds