• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • Tagged with
  • 22
  • 22
  • 16
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Contrôle automatique de véhicules aériens à voilure fixe / Nonlinear automatic control of fixed-wing aerial vehicles

Kai, Jean-Marie 29 November 2018 (has links)
Cette thèse développe une nouvelle approche de contrôle pour les avions à échelle réduite. Les lois de commande proposées exploitent un modèle non linéaire simple mais pertinent des forces aérodynamiques appliquées à l’aéronef. Ils reposent sur une structure hiérarchique de contrôle non linéaires, et sont synthétisées sur la base d’analyse de stabilité et de convergence théoriques. Ils sont conçus pour fonctionner sur un large domaine de vol. En particulier, ils évitent les singularités associées à la paramétrisation de l'attitude et la direction de la vitesse. Dans un premier temps, le problème de stabilisation de trajectoires de référence est résolu en étendant la méthode du "thrust vectoring", utilisée pour les véhicules à voilure tournante, au cas des aéronefs à voilure fixe. Dans le cas des avions, le principal défi est de prendre en compte les forces aérodynamiques dans la conception des systèmes de commande. Afin de résoudre ce problème, le contrôle proposé est conçu et analysé sur la base du modèle de forces aérodynamique proposé. Le domaine d'utilisation de cette loi de commande est élargi et englobe les trajectoires d'équilibre (trim trajectories) qui sont classiquement utilisées dans la littérature. Cette solution est ensuite adaptée au problème de suivi de chemin, afin de concevoir des lois de guidage cinématique et de contrôle dynamique applicables à presque tout chemin 3D régulier. Les lois de contrôle proposées contiennent des termes intégraux qui robustifient le contrôle vis-à-vis de dynamiques non modélisées. Plusieurs problèmes pratiques sont adressés et les lois de commande proposées sont validées par des simulations du type "hardware-in-the-loop". Enfin, des résultats d'essais en vol illustrent la performance des lois de contrôle proposées. / The present thesis develops a new control approach for scale-model airplanes. The proposed control solutions exploit a simple but pertinent nonlinear model of aerodynamic forces acting on the aircraft. Nonlinear controllers are based on a hierarchical structure, and are derived on the basis of theoretical stability and convergence analyses. They are designed to operate on a large spectrum of operating conditions. In particular, they avoid the singularities associated with the parameterization of the attitude and the heading of the vehicle, and do not rely on a decoupling between longitudinal and lateral dynamics. First, the trajectory tracking problem is addressed by extending the thrust vectoring method used for small rotor vehicles to the case of fixed wing vehicles. In the case of airplanes, the main challenge is to take into account the aerodynamic forces in the design of control systems. In order to solve this problem, the proposed control is designed and analyzed on the basis of the proposed aerodynamic forces model. The flight envelope is thus broadened beyond trim trajectories which are classically used in the literature. This solution is then adapted to the path following problem, and kinematic guidance and dynamic control laws are developed within a single coherent framework that applies to almost any regular 3D path. The proposed control laws incorporate integral terms that robustify the control with respect to unmodelled dynamics. Several practical issues are addressed and the proposed control laws are validated via hardware-in-the-loop simulations. Finally, successful flight test results illustrate the soundness and performance of the proposed control laws.
22

Estimation and dynamic longitudinal control of an electric vehicle with in-wheel electric motors / Estimation et contrôle dynamique longitudinale d’un véhicule électrique avec moteurs-roue

Geamanu, Marcel-Stefan 30 September 2013 (has links)
L'objectif principal de cette thèse est l'étude de l'exploitation de systèmes moteurs-roues (machines électriques intégrées à la roue) pour le contrôle de la dynamique véhicule. Cette thèse est issue d'un co-financement (numéro 186-654, 2010-2013) entre le Laboratoire des Signaux et Systèmes (CNRS) et l'Institut Français du Pétrole et Énergies Nouvelles (IFPEN). Les avantages apportés par l'utilisation du moteur électrique sont avérés et de nouvelles techniques de contrôle sont développées pour optimiser son utilisation. Les lois de contrôle basent généralement sur la grandeur principale du moteur électrique: le couple transmis, qui peut être mesuré via le courant consommé. Une autre caractéristique importante du moteur électrique est son temps de réponse, avec le fait qu'il peut produire des couples négatifs, pour ralentir le véhicule, tout en stockant l'énergie. La nouveauté du présent travail est de considérer le moteur-roue électrique comme seul signal de contrôle dans des phases d'accélération et des phases de ralentissement, simplifiant l'architecture de la conception du véhicule et des lois de contrôle. Pour répondre à la demande conducteur tout en préservant un comportement sain du véhicule, des stratégies d'estimation de la limite d'adhérence seront présentées. En fonction de cette adhérence maximale disponible entre la route et les pneus, un couple adéquat sera calculé pour assurer un comportement stable dans des phases d'accélération aussi bien que de freinage. L'aspect critique étudié dans ce travail est la non-linéarité des caractéristiques d'interaction entre la route et le pneu et la complexité de son estimation dans des conditions variables. La stratégie d'estimation devra détecter tous les changements d'adhérence de route et la loi de contrôle calculée devra maintenir la stabilité véhicule même lorsque la friction maximale change. Certaines formes de perturbation et de bruit seront également prises en compte afin de tester la robustesse des approches d'estimation et de contrôle proposés. Parmi les systèmes de sécurité active les plus importants en phase d'accélération, le système de contrôle de traction (TCS) rétablit la traction si les roues commencent à patiner et le programme de stabilité électronique (ESP) intervient pour prévenir une perte menaçante du contrôle latéral du véhicule. Dans le cas du freinage, le système décisif est le système d'antiblocage (ou ABS), qui empêche le blocage des roues. On peut trouver d'autres systèmes embarqués, comme le système de distribution de force de freinage électronique (EBD), qui assure une distribution optimale de la force de freinage transmise aux roues, pour éviter de déraper et assure un ralentissement stable du véhicule. Les systèmes embarqués qui fournissent les estimations doivent être robustes aux bruits de mesure et aux perturbations. A fortiori, ces calculs doivent être faits en temps réel, donc une complexité réduite et une réponse rapide de la loi de contrôle sont nécessaires. Enfin, l'environnement dans lequel le véhicule fonctionne est dynamique, les caractéristiques d'adhérence peuvent varier en fonction de l'état de la route et de la météo. Ainsi, on ne peut prévoir les réactions du conducteur pouvant influencer la réponse globale du véhicule dans des situations d'urgence. Le contrôleur devrait prendre en compte tous ces aspects pour préserver un comportement stable du véhicule. Bien que le contrôle latéral du véhicule présente une importance majeure dans la stabilité globale du véhicule, le présent travail est concentré sur le contrôle longitudinal du véhicule, puisqu'il représente le point de départ de la dynamique véhicule. / The main objective of the present thesis focuses on the integration of the in-wheel electric motors into the conception and control of road vehicles. The present thesis is the subject of the grant 186-654 (2010-2013) between the Laboratory of Signals and Systems (L2S-CNRS) and the French Institute of Petrol and New Energies (IFPEN). The thesis work has originally started from a vehicular electrification project, equipped with in-wheel electric motors at the rear axle, to obtain a full electric urban use and a standard extra-urban use with energy recovery at the rear axle in braking phases. The standard internal combustion engines have the disadvantage that complex estimation techniques are necessary to compute the instantaneous engine torque. At the same time, the actuators that control the braking system have some delays due to the hydraulic and mechanical circuits. These aspects represent the primary motivation for the introduction and study of the integration of the electric motor as unique propelling source for the vehicle. The advantages brought by the use of the electric motor are revealed and new techniques of control are set up to maximize its novelty. Control laws are constructed starting from the key feature of the electric motor, which is the fact that the torque transmitted at the wheel can be measured, depending on the current that passes through the motor. Another important feature of the electric motor is its response time, the independent control, as well as the fact that it can produce negative torques, in generator mode, to help decelerate the vehicle and store energy at the same time. Therefore, the novelty of the present work is that the in-wheel electric motor is considered to be the only control actuator signal in acceleration and deceleration phases, simplifying the architecture of the design of the vehicle and of the control laws. The control laws are focused on simplicity and rapidity in order to generate the torques which are transmitted at the wheels. To compute the adequate torques, estimation strategies are set up to produce reliable maximum friction estimation. Function of this maximum adherence available at the contact between the road and the tires, an adequate torque will be computed in order to achieve a stable wheel behavior in acceleration as well as in deceleration phases. The critical issue that was studied in this work was the non-linearity of the tire-road interaction characteristics and its complexity to estimate when it varies. The estimation strategy will have to detect all changes in the road-surface adherence and the computed control law should maintain the stability of the wheel even when the maximum friction changes. Perturbations and noise are also treated in order to test the robustness of the proposed estimation and control approaches.

Page generated in 0.0499 seconds