Spelling suggestions: "subject:"conversion génique"" "subject:"eonversion génique""
1 |
Analyse de l'évolution des éléments répétitifs de type LINE-1 chez l'humainGauthier, Jacinte January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Étude de l'organisation fonctionnelle du génome humain par un modèle d'interactions entre les séquences répétitives de type LINE-1D'Anjou, Hélène January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
L'évolution de la recombinaison et des structures génomiques : une approche par modélisationPopa, Alexandra-Mariela 24 May 2011 (has links) (PDF)
La recombinaison méiotique joue un double rôle de moteur évolutif en participant à la création d'une diversité génétique soumise à la sélection naturelle et de contrôle dans la fabrication des gamètes lors de la méiose. De plus, en association avec certains mécanismes de réparation, la recombinaison, au travers de la conversion génique biaisée manipule les fréquences alléliques au sein des populations. Les connaissances sur le fonctionnement même de ce processus ont considérablement augmenté ces dernières années faisant découvrir un processus complexe, autant dans son fonctionnement que dans son évolution. Le thème général de la thèse est l'analyse, dans un contexte évolutif, des relations entre les différents rôles et caractéristiques fonctionnelles de la recombinaison. Un modèle de la recombinaison prenant en compte des contraintes liées au contrôle de la méiose et le phénomène d'interférence a permis une comparaison entre espèces au sein des vertébrés et des non-vertébrés de même qu'une comparaison entre sexes. Par ailleurs, nous avons montré l'impact de la localisation spécifique aux sexes des points chauds de recombinaison sur l'évolution du contenu en GC des génomes de plusieurs vertébrés. Finalement, nous proposons un modèle à l'échelle de la génétique des populations, permettant d'analyser l'impact de la recombinaison sur la fréquence de mutations délétères dans les populations humaines. Cette thèse, nous l'espérons, apportera sa pierre à l'étude interdisciplinaire de la recombinaison, à la fois au sein de la biologie et par ses relations au travers de la modélisation avec l'informatique et les mathématiques.
|
4 |
Development of MegaTIC as a new tool for genome engineering and analysis of GABAA receptor localization mechanisms in Caenorhabditis elegans / Développement de MegaTIC comme un nouvel outil pour l'ingénierie du génome et analyse des mécanismes de localisation des récepteurs GABA dans Caenorhabditis elegansJi, Tingting 29 September 2015 (has links)
Les stratégies d'ingénierie du génome par recombinaison homologue basées sur la technologie CRISPR/Cas-9 ont été largement utilisées pour modifier la séquence de gènes chez C. elegans. Cependant, l'efficacité de sélection des animaux modifiés nécessite d'être améliorée. Nous avons développé un nouveau marqueur, le gène miniSOG, qui permet la contre-sélection des animaux non modifiés et que nous avons intégré dans une cassette de double sélection. Les animaux contenant la cassette HySOG sont d'abord sélectionnés pour leur résistance à un antibiotique, l'hygromycine B. HySOG est ensuite excisée et les modifications sont insérées au locus cible. Les souches recombinantes résistent à une exposition à la lumière bleue, qui tue les vers exprimant le gène miniSOG. Nous montrons que la méganucléase I-SceI peut être utilisée pour exciser HySOG et pour introduire des modifications dans la lignée germinale avec la même efficacité que la technologie CRISPR/Cas-9.Des technologies d'ingénierie du génome ont été utilisées pour étiqueter la sous-unité des GABAAR UNC-49 et pour analyser le rôle de MADD-4/Punctin, UNC-40/DCC et NLG-1/neurologine sur l'agrégation synaptique des GABAAR à la jonction neuromusculaire GABAergique. Nous montrons que MADD-4, une protéine de la matrice extracellulaire sécrétée par les motoneurones, est un nouveau ligand de NLG-1 et de UNC-40 et constitue un organisateur synaptique antérograde des synapses GABAergiques. D'abord, l'isoforme courte de MADD-4, MADD-4B, lie directement NLG-1 et assure sa localisation à la membrane post-synaptique. Ensuite, MADD-4B lie, recrute et active probablement le récepteur UNC-40, qui renforce l'interaction des GABAAR avec NLG-1. / CRISPR/Cas-9-based techniques have been widely used to engineer any gene in C. elegans by homologous recombination. However, the selective efficacy of engineered animals needs to be expanded. We have developed miniSOG as a counter-selection marker in a dual selection strategy. Animals containing the dual selection cassette HySOG are firstly selected by the resistance to the antibiotic hygromycin B. HySOG is then excised and customized gene modifications are inserted into target sites. Recombinant strains are selected based on the resistance to blue light exposure, which otherwise kills miniSOG expressing worms. We demonstrate that meganuclease I-SceI can be used to excise HySOG and to introduce gene modifications in C. elegans germline as efficiently as CRISPR/Cas-9. Genome-engineering techniques have been used to tag the GABAAR subunit UNC-49 with RFP and to analyze the role of MADD-4/Punctin, UNC-40/DCC and NLG-1/neuroligin on GABAARs clustering at GABAergic NMJs. We showed that MADD-4/Punctin, an extracellular matrix protein secreted by GABAergic neurons, is a new ligand of NLG-1/neuroligin and of UNC-40/DCC and functions as a central anterograde organizer of GABAergic synapses. First, the short isoform of MADD-4, MADD-4B directly binds NLG-1/neuroligin and localizes it in the post-synaptic membrane of GABAergic synapses. Second, MADD-4B binds, recruits and likely activates the netrin receptor UNC-40/DCC, which in turn promotes the interaction of GABAAR with NLG-1/neuroligin and its localization at the synapse.
|
5 |
The evolution of recombination and genomic structures : a modelling approach / L’évolution de la recombinaison et des structures génomiques : une approche par modélisationPopa, Alexandra-Mariela 24 May 2011 (has links)
La recombinaison méiotique joue un double rôle de moteur évolutif en participant à la création d'une diversité génétique soumise à la sélection naturelle et de contrôle dans la fabrication des gamètes lors de la méiose. De plus, en association avec certains mécanismes de réparation, la recombinaison, au travers de la conversion génique biaisée manipule les fréquences alléliques au sein des populations. Les connaissances sur le fonctionnement même de ce processus ont considérablement augmenté ces dernières années faisant découvrir un processus complexe, autant dans son fonctionnement que dans son évolution. Le thème général de la thèse est l'analyse, dans un contexte évolutif, des relations entre les différents rôles et caractéristiques fonctionnelles de la recombinaison. Un modèle de la recombinaison prenant en compte des contraintes liées au contrôle de la méiose et le phénomène d'interférence a permis une comparaison entre espèces au sein des vertébrés et des non-vertébrés de même qu'une comparaison entre sexes. Par ailleurs, nous avons montré l'impact de la localisation spécifique aux sexes des points chauds de recombinaison sur l'évolution du contenu en GC des génomes de plusieurs vertébrés. Finalement, nous proposons un modèle à l'échelle de la génétique des populations, permettant d'analyser l'impact de la recombinaison sur la fréquence de mutations délétères dans les populations humaines. Cette thèse, nous l'espérons, apportera sa pierre à l'étude interdisciplinaire de la recombinaison, à la fois au sein de la biologie et par ses relations au travers de la modélisation avec l'informatique et les mathématiques. / Meiotic recombination plays several critical roles in molecular evolution. First, recombination represents a key step in the production and transmission of gametes during meiosis. Second, recombination facilitates the impact of natural selection by shuffling genomic sequences. Furthermore, the action of certain repair mechanisms during recombination affects the frequencies of alleles in populations via biased gene conversion. Lately, the numerous advancements in the study of recombination have unraveled the complexity of this process regarding both its mechanisms and evolution. The main aim of this thesis is to analyze the relationships between the different causes, characteristics, and effects of recombination from an evolutionary perspective. First, we developed a model based on the control mechanisms of meiosis and inter-crossover interference. We further used this model to compare the recombination strategies in multiple vertebrates and invertebrates, as well as between sexes. Second, we studied the impact of the sex-specific localization of recombination hotspots on the evolution of the GC content for several vertebrates. Last, we built a population genetics model to analyze the impact of recombination on the frequency of deleterious mutation in the human population.
|
6 |
Caractérisation d’un point chaud de recombinaison méiotique chez Arabidopsis thaliana / Characterization of a meiotic recombination hotspot in Arabidopsis thalianaKhademian, Hossein 13 March 2012 (has links)
La recombinaison méiotique initiée en prophase I de méiose génère soit des crossing-over (COs), qui sont des échanges réciproques entre segments chromosomiques, ou des conversions géniques non associées aux COs (NCOs). Les deux types d'événements se produisent dans de petites régions (moins de 10 kilobases) appelées points chauds, qui sont distribuées de manière non homogène le long des chromosomes. L'objectif de ma thèse était la caractérisation d'un point chaud de recombinaison méiotique (nommée 14a) chez Arabidopsis thaliana (i) dans différentes accessions (ii) dans le mutant msh4, un gène impliqué dans la formation des COs. Dans les deux hybrides ColxLer et ColxWs (i) 14a a un taux très élevé de COs 0,85% et 0,49%, respectivement (ii) Les COs sont regroupés dans deux petites régions de quelques kilobases, 14a1 et 14a2 avec une distribution de type gaussienne observée aux points chauds décrits dans d'autres espèces (iii) 14a1 est aussi un point chaud de NCO avec un taux aussi élevé que celui des COs (0,5%) dans ColxLer (iv) un biais de l'initiation de recombinaison a été trouvé dans 14a1 aussi bien pour les COs que les NCOs dans le fond génétique ColxLer.Une réduction de la fréquence de CO a été observée dans le mutant msh4 dans le fond génétique ColxLer à 14a1 et 14a2 (6,4% et 18,7% par rapport au sauvage). Cela confirme le rôle précédemment connu de la protéine MSH4 impliqué dans la formation de CO. La fréquence de NCO à 14a1 est similaire à celle observéedans le fond sauvage. Le rôle des H3K4 histones trimethyltransferase d’Arabidopsis dans la recombinaison méiotique (comme précédemment observé comme Set1 chez S. cerevisiae ou PRDM9 chez les mammifères) a également été étudiée. Aucun des dix gènes d’histones méthyltransférase étudié n'a montré de rôle dans la méiose. Cela pourrait être dû à (i) une forte redondance de la fonction entre les protéines (ii) une autre histone méthyltransférase en charge de l'étiquetage des points chauds de recombinaison méiotique (plus de 29 putatif histone méthyltransférase ont été identifiés dans le génome d'Arabidopsis!) (iii) contrairement à S. cerevisiae, les souris et l'homme, un autre mécanisme de contrôle épigénétique de la recombinaison méiotique. / Meiotic recombination initiated in prophase I of meiosis generates either crossovers (COs), which are reciprocal exchanges between chromosome segments, or gene conversion not associated to crossovers (NCOs). Both kinds of events occur in narrow regions (less than 10 kilobases) called hotspots, which are distributed non-homogenously along chromosomes. The aim of my PhD was the characterization of a hotspot of meiotic recombination (named 14a) in Arabidopsis thaliana (i) across different accessions (ii) in msh4 mutant, a gene involved in CO formation. In both ColxLer and ColxWs hybrids (i) 14a had a very high rate of COs 0.85% and 0.49%, respectively (ii) COs clustered in two small regions of a few kilobases, 14a1 and 14a2 with typical Gaussian curve distribution observed in other organisms (iii) 14a1 was also a hotspot of NCO with high rate (0.5%) in ColxLer (iv) a bias of recombination initiation at 14a1 CO and NCO hotspot was found in ColxLer. A reduction of CO frequency was observed in msh4 mutant in ColxLer background at 14a1 (6.4%) and 14a2 (18.7%) compared to wild type. This confirmed previously known role of MSH4 protein in CO formation. Frequency of NCO at 14a1 was similar to wild type. The role of putative Arabidopsis histone H3K4 trimethyltransferase in meiotic recombination as previously observed like Set1 in S.cerevisiae or PRDM9 in mammals (mice and human) was also studied. None of ten putative histone methyltransferase genes was involved in meiosis. This could be due to (i) a strong redundancy of function between gene products (ii) another histone methyltransferase in charge of labeling meiotic recombination hotspots (more than 29 putative histone methyltransferase have been identified in the Arabidopsis genome!) (iii) contrary to S. cerevisiae, mice and humans, another mechanism for epigenetic control of meiotic recombination
|
7 |
La conversion génique biaisée : origine, dynamique et intensité de la quatrième force d’évolution des génomes eucaryotes / Biased gene conversion : origin, dynamics and intensity of the fourth evolutionary force of eucaryotic genomesLesecque, Yann 11 July 2014 (has links)
En génomique comparative, on considère classiquement trois forces déterminant l'évolution des séquences : la mutation, la sélection et la dérive génétique. Récemment, lors de l'étude de l'origine évolutive des variations de la composition en base des génomes, un quatrième agent a été identifié : la conversion génique biaisée (BGC). Le BGC est intimement lié à la recombinaison méiotique et semble présent chez la plupart des eucaryotes. Ce phénomène introduit une surreprésentation de certains allèles dans les produits méiotiques aboutissant à une augmentation de la fréquence de ces variants dans la population. Ce processus est capable de mimer et d'interférer avec la sélection naturelle. Il est donc important de le caractériser afin de pouvoir le distinguer efficacement de la sélection dans l'étude de l'adaptation à l'échelle moléculaire. C'est ce que nous nous attachons à faire dans le cadre de ce travail. Pour cela nous utilisons deux espèces modèles. Premièrement la levure Saccharomyces cerevisiae pour laquelle une carte de recombinaison haute résolution permettant l'analyse du processus de conversion, est disponible. L'étude approfondie de cette carte nous a permis de lever le voile sur les mécanismes moléculaires qui sous-tendent le BGC. Deuxièmement, grâce à des découvertes récentes sur la détermination des patrons de recombinaison via la protéine PRDM9 chez les mammifères, nous avons quantifié la dynamique et l'intensité de ce processus dans l'histoire évolutive récente de l'homme. Ces résultats nous ont permis de confirmer la place du BGC comme quatrième force d'évolution moléculaire, mais aussi de discuter de l'origine évolutive de ce phénomène / Usually, three main forces are considered when studying sequences evolution in comparative genomics : mutation, selection and genetic drift. Recently, a fourth process has been identified during the study of base composition landscapes in genomes : biased gene conversion (BGC). This phenomenon introduces an overrepresentation of certain alleles in meiosis products (gametes or spores) leading to an increase of the frequency of those variants in the population. Thus, it is able to mimic and interfere with natural selection. Hence, it is important to describe this phenomenon in order to be able to trustfully distinguish BGC and selection in the study of adaptation at the molecular scale. So, the main goal of this work is to analyze the molecular origin, the intensity and the dynamics of BGC. To do so, we use two model species. First, we use the yeast Saccharomyces cerevisiae because, for this specie, a high-resolution recombination map is available which allows a fine study of the conversion process. Analyzing this map led us to shed the light on the molecular mechanisms of BGC. Secondly, recent discoveries on the role of the PRDM9 protein in the determination of recombination landscapes in mammals allowed us to quantify the dynamics and intensity of BGC in the recent human history. Thanks to those two studies, we first confirmed that BGC is the fourth force of molecular evolution and we also provided hypotheses about the evolutionary origin of this process
|
8 |
Caractérisation d'un point chaud de recombinaison méiotique chez Arabidopsis thalianaKhademian, Hossein 13 March 2012 (has links) (PDF)
La recombinaison méiotique initiée en prophase I de méiose génère soit des crossing-over (COs), qui sont des échanges réciproques entre segments chromosomiques, ou des conversions géniques non associées aux COs (NCOs). Les deux types d'événements se produisent dans de petites régions (moins de 10 kilobases) appelées points chauds, qui sont distribuées de manière non homogène le long des chromosomes. L'objectif de ma thèse était la caractérisation d'un point chaud de recombinaison méiotique (nommée 14a) chez Arabidopsis thaliana (i) dans différentes accessions (ii) dans le mutant msh4, un gène impliqué dans la formation des COs. Dans les deux hybrides ColxLer et ColxWs (i) 14a a un taux très élevé de COs 0,85% et 0,49%, respectivement (ii) Les COs sont regroupés dans deux petites régions de quelques kilobases, 14a1 et 14a2 avec une distribution de type gaussienne observée aux points chauds décrits dans d'autres espèces (iii) 14a1 est aussi un point chaud de NCO avec un taux aussi élevé que celui des COs (0,5%) dans ColxLer (iv) un biais de l'initiation de recombinaison a été trouvé dans 14a1 aussi bien pour les COs que les NCOs dans le fond génétique ColxLer.Une réduction de la fréquence de CO a été observée dans le mutant msh4 dans le fond génétique ColxLer à 14a1 et 14a2 (6,4% et 18,7% par rapport au sauvage). Cela confirme le rôle précédemment connu de la protéine MSH4 impliqué dans la formation de CO. La fréquence de NCO à 14a1 est similaire à celle observéedans le fond sauvage. Le rôle des H3K4 histones trimethyltransferase d'Arabidopsis dans la recombinaison méiotique (comme précédemment observé comme Set1 chez S. cerevisiae ou PRDM9 chez les mammifères) a également été étudiée. Aucun des dix gènes d'histones méthyltransférase étudié n'a montré de rôle dans la méiose. Cela pourrait être dû à (i) une forte redondance de la fonction entre les protéines (ii) une autre histone méthyltransférase en charge de l'étiquetage des points chauds de recombinaison méiotique (plus de 29 putatif histone méthyltransférase ont été identifiés dans le génome d'Arabidopsis!) (iii) contrairement à S. cerevisiae, les souris et l'homme, un autre mécanisme de contrôle épigénétique de la recombinaison méiotique.
|
9 |
La recombinaison comme moteur de l’évolution des génomes : caractérisation de la conversion génique biaisée chez la souris / Recombination as a driver of genome evolution : characterisation of biased gene conversion in miceGautier, Maud 25 September 2019 (has links)
Au cours de la méiose, les points chauds de recombinaison sont le siège de la formation de cassures double-brin de l’ADN. Ces dernières sont ensuite réparées par un processus qui, chez de nombreuses espèces, favorise la transmission des allèles G et C : la conversion génique biaisée vers GC (gBGC). L’intensité de cet important distorteur de la ségrégation méiotique varie fortement entre espèces mais les facteurs déterminant son évolution sont toujours inconnus. Nous avons donc voulu quantifier directement le biais de transmission chez la souris et comparer les paramètres dont il dépend avec d’autres mammifères. Dans cette étude, en couplant des développements bioinformatiques à une technique de capture ciblée d’ADN suivie de séquençage haut-débit (capture-seq), nous avons réussi à mettre au point une approche qui s’est révélée 100 fois plus performante pour détecter les événements de recombinaison que les méthodes existant actuellement. Ainsi, nous avons pu identifier 18 821 crossing-overs (COs) et non-crossovers (NCOs) à très grande résolution chez des individus uniques, ce qui nous a permis de caractériser minutieusement la recombinaison chez la souris. Chez cette espèce, les points chauds de recombinaison sont ciblés par la protéine PRDM9 et sont donc soumis à une deuxième forme de conversion génique biaisée (BGC) : le biais d’initiation (dBGC). La quantification du dBGC et du gBGC à partir de nos données nous a permis de mettre en lumière le fait que, au moment où des populations structurées s’hybrident, le gBGC des lignées parentales est propagé par un phénomène d’auto-stop génétique (genetic hitchhiking) provenant du dBGC. Nous avons ensuite pu observer que, chez les souris mâles, seuls les NCOs — et plus particulièrement les NCOs contenant un seul marqueur génétique— contribuent à l’intensité du gBGC. En comparaison, chez l’Homme, à la fois les NCOs et au moins une part des COs (ceux qui présentent des tracts de conversion complexes) distordent les fréquences alléliques. Ceci suggère que la machinerie de réparation des cassures double-brin qui induit le biais de conversion génique (BGC) présente des variations au sein des mammifères. Nos résultats sont aussi en accord avec l’hypothèse selon laquelle une pression de sélection limiterait l’intensité de ce processus délétère à l’échelle de la population. Cela se traduirait par une compensation de la taille efficace de population à de multiples niveaux : par le taux de recombinaison, par la longueur des tracts de conversion et par le biais de transmission. Somme toute, notre travail a permis de mieux comprendre la façon dont la recombinaison et la conversion génique biaisée opèrent chez les mammifères. / During meiosis, recombination hotspots host the formation of DNA double-strand breaks (DSBs). DSBs are subsequently repaired through a process which, in a wide range of species, is biased towards the favoured transmission of G and C alleles: GC-biased gene conversion (gBGC). The intensity of this fundamental distorter of meiotic segregation strongly varies between species but the factors dictating its evolution are not known. We thus aimed at directly quantifying the transmission bias in mice and comparing the parameters on which it depends with other mammals. Here, we coupled capture-seq and bioinformatic techniques to implement an approach that proved 100 times more powerful than current methods to detect recombination. With it, we identified 18,821 crossing-over (CO) and non-crossover (NCO) events at very high resolution in single individuals and could thus precisely characterise patterns of recombination in mice. In this species, recombination hotspots are targeted by PRDM9 and are therefore subject to a second type of biased gene conversion (BGC): DSB-induced BGC (dBGC). Quantifying both dBGC and gBGC with our data brought to light the fact that, in cases of structured populations, past gBGC from the parental lineages is hitchhiked by dBGC when the populations cross. We next observed that, in male mice, only NCOs — and more particularly single-marker NCOs — contribute to the intensity of gBGC. In contrast, in humans, both NCOs and at least a portion of COs (those with complex conversion tracts) distort allelic frequencies. This suggests that the DSB repair machinery leading to gBGC varies across mammals. Our findings are also consistent with the hypothesis of a selective pressure restraining the intensity of the deleterious gBGC process at the population-scale: this would materialise through a multi-level compensation of the effective population size by the recombination rate, the length of conversion tracts and the transmission bias. Altogether, our work has allowed to better comprehend how recombination and biased gene conversion proceed in the mammalian clade
|
10 |
Probabilité et temps de fixation à l’aide de processus ancestrauxElgbeili, Guillaume 11 1900 (has links)
Ce mémoire analyse l’espérance du temps de fixation conditionnellement à
ce qu’elle se produise et la probabilité de fixation d’un nouvel allèle mutant
dans des populations soumises à différents phénomènes biologiques en uti-
lisant l’approche des processus ancestraux. Tout d’abord, l’article de Tajima
(1990) est analysé et les différentes preuves y étant manquantes ou incomplètes
sont détaillées, dans le but de se familiariser avec les calculs du temps de fixa-
tion. L’étude de cet article permet aussi de démontrer l’importance du temps
de fixation sur certains phénomènes biologiques. Par la suite, l’effet de la sé-
lection naturelle est introduit au modèle. L’article de Mano (2009) cite un ré-
sultat intéressant quant à l’espérance du temps de fixation conditionnellement
à ce que celle-ci survienne qui utilise une approximation par un processus de
diffusion. Une nouvelle méthode utilisant le processus ancestral est présentée
afin d’arriver à une bonne approximation de ce résultat. Des simulations sont
faites afin de vérifier l’exactitude de la nouvelle approche. Finalement, un mo-
dèle soumis à la conversion génique est analysé, puisque ce phénomène, en
présence de biais, a un effet similaire à celui de la sélection. Nous obtenons
finalement un résultat analytique pour la probabilité de fixation d’un nouveau
mutant dans la population. Enfin, des simulations sont faites afin de détermi-
nerlaprobabilitédefixationainsiqueletempsdefixationconditionnellorsque
les taux sont trop grands pour pouvoir les calculer analytiquement. / The expected time for fixation given its occurrence, and the probability of fixa-
tion of a new mutant allele in populations subject to various biological phe-
nomena are analyzed using the approach of the ancestral process. First, the
paper of Tajima (1990) is analyzed, and the missing or incomplete proofs are
fully worked out in this Master thesis in order to familiarize ourselves with
calculations of fixation times. Our study of Tajima’s paper helps to show the
importance of the fixation time in some biological phenomena. Thereafter, we
extend the work of Tajima (1990) by introducing the effect of natural selec-
tion in the model. Using a diffusion approximation, the work of Mano (2009)
provides an interesting result about the expected time of fixation given its oc-
currence. We derived an alternative method that uses an ancestral process that
approximates well Mani’s result. Simulations are made to verify the accuracy
ofthenewapproach.Finally,onemodelsubjecttogeneconversionisanalyzed,
since this phenomenon, in the presence of bias, has a similar effect as selection.
We deduce an analytical result for the probability of fixation of a new mutant
in the population. Finally, simulations are made to determine the probability
of fixation and the time of fixation given its occurrence when rates are too large
to be calculated analytically.
|
Page generated in 0.0963 seconds