• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude et intégration de convertisseurs multicellulaires parallèles entrelacés et magnétiquement couplés

Bouhalli, Nadia 11 December 2009 (has links) (PDF)
L'apparition de convertisseurs multicellulaires parallèles entrelacés et magnétiquement couplés a conduit ces dernières années à améliorer les performances des convertisseurs (densité de puissance, efficacité, dynamique,...). Il existe plusieurs topologies d'entrelacement qui utilisent des Transformateurs Interphases. L'objectif principal de cette étude est de trouver parmi ces topologies celles qui sont les mieux adaptées à un contexte d'intégration d'électronique de puissance pour minimiser la taille et réduire les pertes. Une première étape de modélisation a permis d'effectuer une étude comparative de quelques topologies. Un procédé de permutation des phases d'alimentation a été présenté afin de réduire les ondulations du courant de phases et les pertes ohmiques. Les résultats obtenus valident qualitativement l'avantage de la solution retenue par rapport à la solution standard. Enfin, la réalisation pratique d'un prototype de convertisseur modulaire utilisant des Transformateurs Inter-phases est abordé. Il s'agit d'un régulateur chargé d'alimenter les microprocesseurs (1,2V/100A) (Voltage Regulator Module (VRM)) à 5 modules. Les résultats expérimentaux montrent l'avantage de l'utilisation des Transformateurs Inter-phases par rapport à la solution classique.
2

Etude prospective de la topologie MMC et du packaging 3D pour la réalisation d’un variateur de vitesse en moyenne tension / Prospective study on medium-voltage drive with MMC Topology and 3D packaging power modules

Wu, Cong Martin 08 April 2015 (has links)
La topologie modulaire multiniveaux est une structure d'électronique de puissance construite par la mise en série de sous-modules identiques, composés chacun d'une cellule de commutation et d'un condensateur. Un tel système de conversion pouvant comporter un grand nombre de cellules permet d'augmenter le rendement global et la qualité des signaux en sortie. De plus, il permet d'utiliser des composants basse tension présentant un meilleur comportement dynamique et un rapport qualité-prix bien supérieur aux composants moyenne tension. Il permet également, par rapport aux structures conventionnelles, une grande souplesse pour la conception et la fabrication du fait de son aspect modulaire, tout en s'affranchissant d'un transformateur volumineux et onéreux en entrée. Comparé aux autres types de topologies, avantageuses avec un nombre limité de niveaux, le convertisseur modulaire multiniveaux semble être mieux adapté aux applications en moyenne et haute tensions, qui sont tributaires de l'association des composants de puissance. Néanmoins, pour la variation de vitesse, un certain nombre de défis technologiques ont été mis en évidence, compte tenu du fonctionnement particulier de l'onduleur modulaire multiniveaux et des contraintes imposées par l'opération en très basse fréquence. En le fonctionnement normal, la forme d'onde des courants internes, contrairement aux autres types de topologies, n'est pas symétrique en raison de la distribution du courant direct dans chaque bras. Cela entraîne une disparité significative en termes de dissipation thermique parmi les interrupteurs constituant un sous-module. Avec le choix d'une technologie de packaging 3D, la possibilité de refroidir les puces semi-conductrices en double-face offre une meilleure capacité de refroidissement et une nouvelle perspective de conception des modules pour cette application. Un nouveau concept de report de puces est présenté et un prototype de tel module a été réalisé, modélisé et caractérisé. Il permet d'équilibrer globalement la chaleur dissipée par les puces sur les deux faces du module, problème inhérent à l'emploi de structure 3D. Conjugué à la mutualisation d'un interrupteur par deux puces en parallèle, la nouvelle architecture a aussi pour objectif d'équilibrer le refroidissement double-face dans le temps. En effet, pour les opérations en basse fréquence, les interrupteurs fonctionnent en régime instationnaire avec de forte variation de température, il n'est donc plus possible de compenser les effets thermomécaniques de chaque composant l'un par l'autre, comme en régime stationnaire et avec un positionnement planaire des puces. D'autre part, d'un point de vu systémique, la stratégie de commande et le dimensionnement des condensateurs flottants de l'onduleur modulaire multiniveaux sont deux aspects intimement liés. En effet, les condensateurs flottants sont le siège d'ondulations de tension de très forte amplitude. Cela a pour effet de déstabiliser l'onduleur, voire de provoquer la destruction des composants en atteignant des niveaux de tension trop élevés. Ainsi, des contrôleurs judicieusement conçus permettent de réduire les ondulations indésirables, et a fortiori, d'embarquer des capacités moins importantes dans le système, tant que ces dernières sont inversement proportionnelles à l'ondulation de la tension. Afin d'avoir une compréhension approfondie sur les dynamiques régissant le convertisseur modulaire multiniveaux, un modèle dynamique global basé sur la représentation d'état a été établi. Bien que cette représentation soit limitée à l'harmonique 2 des grandeurs caractéristiques, elle permet une fidèle interprétation du mécanisme de conversion sans passer par des modèles énergétiques bien plus complexes à exploiter, et de proposer des lois de commande montrant leur efficacité notamment autour de la fréquence nominale. Cela a été vérifié sur une maquette de puissance réalisée dans le cadre de cette thèse. / Multilevel modular topology converts energy between two direct and alternative endings. This structure is constructed by the series connection of identical sub-modules, composed of a switching cell and a floating capacitor, and with arm inductors. Such a conversion system may reach a large number of levels increases the overall efficiency and quality of the output signals. In addition, it allows the use of low voltage components with better dynamics and cost effectiveness above the high voltage components. It also allows flexibility in the work of design and manufacture due to its modularity, while avoiding a bulky and expensive input transformer, regarding the conventional technology. Compared with other types of topologies, advantageous with a limited number of levels, the modular multilevel converter seems to be more suited for medium and high voltage applications, which are dependent on the association of power components. However, for variable speed drive application, a certain number of technological challenges have been highlighted, given the specific functional characteristics of the modular multilevel inverter and the constraints imposed by the very low frequency operation. On the one hand, for the normal operation of a multilevel modular converter, the waveform of the internal currents, in contrast to other types of topologies, is not symmetrical due to the distribution of the direct current in each phase leg. This may entail a significant disparity in terms of heat dissipation within the switching devices constituting a sub-module. Therefore, the problem of thermal management of active components is emphasized in the use of a modular multilevel converter. With the choice of a 3D packaging technology, interconnection by bumps, the ability to cool the semiconductor chips through the both sides of a module offers better cooling effects and a new perspective to design the power module for the studied structure. The concept of laying chips on both the two substrates of module without facing each other provides overall balanced dissipation in the space and permit to overcome the unbalanced heat distribution induced by bumps. Combined with the sharing of a switch by two chips in parallel, the proposal of the new architecture for 3D power module also aims to balance the double-sided cooling in the time range. Indeed, for the very low frequency operation, the switches operate in unsteady state where each switch has its own thermal behavior, it is no longer possible to compensate the thermo-mechanical constraints over each component with the help of the others, as in steady state and with a planar chips positioning scheme. On the other hand, from a systemic point of view, the control strategy and the dimensioning of floating capacitors of modular multilevel inverter are two interrelated aspects. Because the floating capacitors, having the role of energy sources, are loaded / unloaded through the modulation period, which causes very high voltage ripples across those capacitors with a very low frequency. This will destabilize the inverter and even provoke the destruction of components by approaching too high voltage levels. Thus, wisely designed controllers reduce unwanted ripples and, furthermore, allow embarking much smaller capacity in the system, as they are inversely proportional to the voltage ripple. In order to have a thorough understanding on the dynamics governing the modular multilevel converter, a comprehensive dynamic model based on state-space representation was established. Although this representation is limited to the second harmonic of characteristic variable, it allows a faithful interpretation of the conversion mechanism without using energy models, more complex to operate, and control laws can also be proposed and their effectiveness around the nominal frequency has been underlined. Concerning the very low frequency operations, another solution has been proposed and is ongoing patent pending.
3

Modélisation et commande des convertisseurs MMC en vue de leur intégration dans le réseau électrique / Modular multilevel converters model and control for the integration to the grid system

Samimi, Shabab 09 November 2016 (has links)
Le système de transport d’électricité doit évoluer pour satisfaire les besoins du marché de l’électricité et de l’insertion de la production renouvelable. Les systèmes de transport dits HVDC se développent. Les interfaces d’électroniques de puissance vont jouer un rôle majeur et doivent faire preuve d’une extrême fiabilité, d’une grande efficacité et rester économiquement abordables.La technologie MMC (Convertisseur Modulaire Multi-niveaux) connaît un essor par rapport à des technologies classiques, comme le convertisseur trois-niveaux. Sa topologie étant complexe, deux niveaux de contrôle peuvent être définis. Le premier niveau porte sur le contrôle des interrupteurs pour équilibrer les tensions des sous-modules. Le second niveau contrôle les courants, la puissance et l’énergie dans le système.Cette thèse est axée sur ce deuxième niveau de contrôle. Une approche hiérarchisée et formelle, basée sur l’inversion du modèle pour le contrôle de l’énergie du MMC est présentée. Pour ce contrôle, différentes méthodes ont été proposées et comparées. Cela implique de développer une modélisation, mettre en place un contrôle. Différents modèles et contrôles ont été développés.Le MMC est généralement intégré dans une liaison HVDC où deux stations AC/DC ont un contrôle différent. Un soin particulier doit être apporté à la station dédiée au contrôle de la tension. En effet, la gestion de l’énergie dans le MCC est un point critique pour la stabilité de la tension.Enfin, les différents types de contrôle évoqués ont été étudiés dans le cas d’une liaison HVDC. Il a été montré que les échanges entre le bus DC et les MMC jouent un rôle important pour la régulation de la tension du bus DC / In future, the capability of the electric power transmission continues to grow due to renewable energy production and the needs of electrical market. Consequently, many HVDC transmission systems are developed. Definitely the power electronic interfaces will play a key role to provide high reliability, good efficiency and cost effectiveness for this AC/DC conversion.Recently, the Modular Multilevel Converter (MMC) has taken the advantage over the more classical converter as three-level VSC. Since MMC topology is complex, two different control levels may be distinguished: the control of the switches mainly orientated on the balance of hundreds of voltage on the elementary submodules, the higher level control whose aim is to control the currents, power and energy in the system.This thesis is oriented mainly on the latter. It discusses a hierarchical and formal approach for the MMC to control the energy in all the storage elements. At first it is shown that an energy control is required mandatory. Secondly, it supposes to develop an energetic model which is inverted to design the energy control. Then different solutions of control have been developed and discussed.In the majority of applications, MMC is integrated in an HVDC point to point link where the two AC/DC substations have different roles. A specific attention has to be paid on the station which controls the voltage since the way to manage the energy in the MMC has a critical role in the DC voltage stability.Finally, all these types of control have been tested and discussed on an HVDC. It is shown that the exchange between the DC bus and the MMC placed on both sides play a key role in the DC bus voltage regulation.
4

Une Topologie CA-CC Baseé sur un Convertisseur Modulaire Multiniveau Entrelacé Faisible à Applications de Transformateur d’Électronique de Puissance / An AC-DC Topology Based on an Interleaved Modular Multilevel Converter Feasible to Solid-State Transformer Applications

Rabelo joca, Davi 11 January 2019 (has links)
Ce travail concerne l'étude théorique,l’analyse numérique et la validationexpérimentale d'une topologie de convertisseurd’électronique de puissance basée sur unconvertisseur multiniveau modulaire entrelacéavec transformateur moyenne fréquence.L’architecture est adaptée pour l’étage deconversion AC-DC dans les applications detransformateur d'électronique de puissance pourla connexion entre un réseau alternatif moyennetension et un réseau continu basse tension.L’entrelacement réduit les pertes par conductiondans les interrupteurs. Le transformateurmoyenne fréquence 10 kHz assure une isolationgalvanique et connecte le convertisseurmultiniveau modulaire entrelacé à unconvertisseur pont complet. Avec comme pointde départ la structure, le principe defonctionnement, la modélisation, la technique demodulation et le schéma de commande sontdiscutés. Une caractéristique du convertisseur estla génération simultanée de la tension du réseaubasse fréquence et de la tension primaire dutransformateur moyenne fréquence.L'équilibrage de la tension des condensateurs etla minimisation du courant de circulation sontcombinés dans un seul algorithme. La commanderégule le courant alternatif et la tension du buscontinu, du côté haute tension, ainsi que latension continue et le flux de puissance, du côtébasse tension. La validation expérimentale duconvertisseur est réalisée avec un prototype de720 W monophasé à l’échelle réduite. Lesrésultats démontrent la stabilité du système decommande lors d'opérations en régimepermanent et dynamiques (pas de charge,inversion du flux de puissance). / This work aims to present thetheoretical study, the numerical analysis and theexperimental validation of a power electronicsconverter topology based on an interleavedmodular multilevel converter with mediumfrequencytransformer. The architecture issuitable for the AC-DC stage in solid-statetransformer applications for the connectionbetween a medium-voltage AC grid and a lowvoltageDC grid. The interleaving reduces theswitch conduction losses. The 10 kHz mediumfrequencytransformer provides galvanicisolation and connects the interleaved modularmultilevel converter to a full-bridge converter.From the converter structure, the principle ofoperation, the modeling, the modulationtechnique, and the control scheme are discussed.One feature of the converter is the simultaneousgeneration of the low-frequency grid voltageand the medium-frequency transformer primaryvoltage. The capacitor voltage balancing and thecirculating currents minimization are combinedtogether in a single algorithm. The controlsystem regulates the AC current and the DC busvoltage, on the high-voltage side, and the DCvoltage and power flow, on the low voltage side.The experimental validation of the converter ismade with a scaled-down single-phase 720 Wprototype. The results demonstrate the controlsystem stability in steady-state and dynamic(load step, power flow inversion) operations.
5

Stratégie de protection de réseaux de transport d’électricité en courant continu multi-terminaux à l’aide de disjoncteurs mécaniques DC / Protection strategy for multi-terminal High Voltage Direct Current grids based on mechanical DC circuit breakers

Loume, Dieynaba 03 October 2017 (has links)
Les réseaux de transport d’électricité multi-terminaux à courant continu se révèlent être la solution adéquate pour une intégration massive d’énergie renouvelable dans les réseaux alternatifs existants. En effet, les réseaux en courant continu sont capables de transmettre de manière efficace des niveaux de puissance élevés sur de très longues distances par rapport aux réseaux alternatifs car, à partir d'une certaine puissance à transmettre, il existe une distance limite à partir de laquelle la transmission d’énergie en courant alternatif perd sa compétitivité face à la transmission en courant continu. L'un des principaux défis liés au développement de ces réseaux de transport d’électricité à courant continu ou Supergrid, concerne leur protection contre des défauts de type court-circuit sur des liaisons en courant continu. . Dans ce travail de thèse, un nouveau concept de stratégie de protection des réseaux en courant continu à haute tension en cas de défaut court-circuit est proposé. La stratégie repose sur une philosophie de protection ayant comme priorité la suppression du courant de défaut avant l’isolation de la liaison en défaut. Elle est basée sur l’utilisation de disjoncteurs mécaniques à courant continu sans avoir recours à des limiteurs de courant de défaut. Une séquence de protection primaire ainsi que deux séquences de sauvegarde en cas de défaillance de disjoncteurs ont été développées, testées et validées à l’aide de simulations de transitoires électromagnétiques et de simulations temps-réel. En outre, les algorithmes des relais de protection ont été implémentés avec l'aide de l’outil d’analyse fonctionnelle descendante SADT (Structured Analysis and Design System). Cette thèse a été effectuée dans le cadre du SuperGrid Institute, une plate-forme de recherche collaborative visant à développer des technologies pour les futurs réseaux de transport d'électricité et regroupant l'expertise d'industries telles que GE Grid Solutions et les laboratoires de recherche publique comme le laboratoire de génie électrique de Grenoble (G2Elab). / Multi-terminal High Voltage Direct Current (MTDC) grids,have been proven to be an adequate solution for massive integration of renewable energy power to existing High Voltage Alternating Current (HVAC) grids. Indeed, HVDC grids are capable of transmitting efficiently high level of power over very long distances compared to HVAC grids since, from a certain power to be transmitted, there is a limited distance from which the AC power transmission loses its efficiency and becomes very costly compared to DC power transmission. One of the main challenges related to the development of theses multi-terminal HVDC grids, or Supergrids, concerns their protection against DC short-circuit faults. In this thesis, a new concept of protection strategy for MTDC grids in case of permanent short-circuit fault on a DC cable has been proposed. The strategy is based on the non-selective fault clearing philosophy where the priority is given to the suppression of the fault current before isolating the faulty transmission line. The strategy is based on mechanical DC breakers and no fault current limiting devices are used. A primary protection sequence as well as two back-up sequences in case of breakers operation failure have been developed, tested and validated through Electromagnetic Transient (EMT) and Real-Time (RT) simulations. Also, algorithms to be implemented on protective relays have been designed with the help of the Structured Analysis and Design System (SADT). This PhD thesis has been performed in the frame of the SuperGrid Institute, a collaborative research platform aiming to develop technologies for the future electricity transmission network and bringing together the expertise of industries such as GE grid solutions and public research laboratories as the Grenoble Electrical Engineering Laboratory (G2Elab).
6

Analyse de stabilité en petit signaux des Convertisseurs Modulaires Multiniveaux et application à l’étude d'interopérabilité des MMC dans les Réseaux HVDC / Small- signal stability analysis of Modular Multilevel Converters and application to MMC –based Multi-Terminal DC grids

Freytes, Julian 07 December 2017 (has links)
Ces travaux de thèse portent essentiellement sur la modélisation, l’analyse et la commande des convertisseurs de type MMC intégrés dans un contexte MTDC. Le premier objectif de ce travail est d’aboutir à un modèle dynamique du convertisseur MMC, exprimé dans le repère $dq$, permettant d’une part, de reproduire avec précision les interactions AC-DC, et d’exprimer, d’autre part, la dynamique interne du convertisseur qui peut interagir également avec le reste du système. Le modèle développé peut être linéarisé facilement dans le but de l’exploiter pour l’étude de stabilité en se basant sur les techniques pour les systèmes linéaires à temps invariant. Ensuite, selon le modèle développé dans le repère dq, différentes stratégies de contrôle sont proposées en fonction de systèmes de contrôle-commande existantes dans la littérature mis en places pour le convertisseur MMC. Étant donné que l’ordre du système est un paramètre important pour l'étude des réseaux MTDC en présence de plusieurs stations de conversion de type MMC, l’approche de réduction de modèles à émerger comme une solution pour faciliter l’étude. En conséquence, différents modèles à ordre réduit sont développés, et qui sont validés par la suite, par rapport au modèle détaillé, exprimé dans le repère dq. Finalement, les modèles MMC développés ainsi que les systèmes de commande qui y ont associés sont exploités, pour l’analyse de stabilité en petits signaux des réseaux MMC-MTDC. Dans ce sens, la stratégie de commande associée à chaque MMC est largement évaluée dans le but d’investiguer les problèmes majeurs qui peuvent surgir au sein d’une configuration MTDC multi-constructeurs / This thesis deals with the modeling and control of MMCs in the context of MTDC. The first objective is to obtain an MMC model in dq frame which can reproduce accurately the AC- and DC- interactions, while representing at the same time the internal dynamics which may interact with the rest of the system. This model is suitable to be linearized and to study its stability, among other linear techniques. Then, based on the developed dq model, different control strategies are developed based on the state-of-the-art on MMC controllers. Since the order of the system may be a limiting factor for studying MTDC grids with many MMCs, different reduced-order models are presented and compared with the detailed dq model. Finally, the developed MMC models with different controllers are used for the MTDC studies. The impact of the chosen controllers of each MMC is evaluated, highlighting the potential issues that may occur in multivendor schemes.
7

Etude et intégration de convertisseurs multicellulaires parallèles entrelacés et magnétiquement couplés / Muticell parallel interleaved coupled converters: analysis and integration

Bouhalli, Nadia 11 December 2009 (has links)
L’apparition de convertisseurs multicellulaires parallèles entrelacés et magnétiquement couplés a conduit ces dernières années à améliorer les performances des convertisseurs (densité de puissance, efficacité, dynamique,...). Il existe plusieurs topologies d’entrelacement qui utilisent des Transformateurs Interphases. L’objectif principal de cette étude est de trouver parmi ces topologies celles qui sont les mieux adaptées à un contexte d’intégration d’électronique de puissance pour minimiser la taille et réduire les pertes. Une première étape de modélisation a permis d’effectuer une étude comparative de quelques topologies. Un procédé de permutation des phases d’alimentation a été présenté afin de réduire les ondulations du courant de phases et les pertes ohmiques. Les résultats obtenus valident qualitativement l’avantage de la solution retenue par rapport à la solution standard. Enfin, la réalisation pratique d’un prototype de convertisseur modulaire utilisant des Transformateurs Inter-phases est abordé. Il s’agit d’un régulateur chargé d’alimenter les microprocesseurs (1,2V/100A) (Voltage Regulator Module (VRM)) à 5 modules. Les résultats expérimentaux montrent l’avantage de l’utilisation des Transformateurs Inter-phases par rapport à la solution classique / During the last years, using coupled parallel interleaved converters enhances converters performances (power density, efficiency, transient response,...). There are several possible interleaved coupled topologies that use Inter-phases Transformers. The main objective of this study is to find among these topologies the best adapted configuration in a context of power electronics integration in order to minimize converter size and to reduce losses. A model is proposed to compare some topologies. An optimal modified sequence of phase order to reduce current ripple and ohmic losses is presented. The obtained results validate the advantage of the coupled solution compared to the standard solution. At last, the implementation of a modular power converter using Inter-phases Transformers is shown. It is a Voltage Regulator Module (1,2V/100A) that consists of five identical modules. Experimental results show the advantage of using Inter-phases Transformers compared to conventional solution
8

Évaluation de dispositifs système-sur-puce pour des applications de type simulateurs temps réel embarqués de systèmes électriques / Evaluation of system-on-chip devices for embedded real-time simulators of electrical systems

Tormo Borreda, Daniel 11 July 2018 (has links)
L’objectif de ce travail de Thèse est d’évaluer les capacités de composants numérique de type Système-sur-Puce (SoC en anglais) pour l’implantation de Simulateurs Temps Réel Embarqués (ERTS en anglais) de systèmes électromécaniques et d’électronique de puissance. En effet, l’utilisation de ces simulateurs n’est pas seulement limitée aux validations matériel dans la boucle (en anglais Hardware-in-the-Loop ou HIL) du système mais doivent également être embarqués avec le contrôleur afin d’assurer plusieurs fonctionnalités additionnelles comme l'observation, l'estimation, commande sans capteur (ou sensorless), le diagnostic ou la surveillance de la santé, commande tolérante aux défauts, etc.La réalisation de ces simulateurs doit néanmoins considérer plusieurs contraintes à plusieurs niveaux de développement : durant la modélisation de la partie du système à simuler en temps-réel, durant la réalisation numérique et enfin durant l’implantation sur le composant numérique utilisé. Ainsi, le travail réalisé durant cette Thèse s’est focalisé sur ce dernier niveau et l’objectif était d’évaluer les capacités temps/ressources des composants de type SoC pour l’implantation de modules ERTS. Ce type de plateformes intègrent dans un même composant de puissants processeurs, un circuit logique programmable (de type Field-Programmable Gate Array ou FPGA), et d’autres périphériques, ce qui offre plusieurs opportunités d’implantation.Afin de pallier les limitations liées au codage VHDL de la partie FPGA, il existe des outils High-Level Synthesis (HLS) qui permettent de programmer ces dispositifs en utilisant des langages à haut niveau d'abstraction comme C, C++ ou SystemC. De plus, en incluant des directives et contraintes au code source, ces outils peuvent produire des implémentations matérielles différentes (architecture totalement combinatoire, « pipeline », architecture parallélisées ou factorisées, arranger les données et leurs formats pour une meilleure utilisation des ressources de mémoire, etc.).Dans le but d’évaluer ces différentes implantations, deux cas d’études ont été choisis : le premier se compose d’un Générateur Asynchrone à Double Alimentation (GADA) et le second d’un Convertisseur Modulaire Multiniveau (ou Modular Multi-level Converter - MMC). Vu que la GADA a une dynamique basse/moyenne (dynamiques électriques et mécaniques), deux versions d’implantations ont été évaluées : (i) une implantation full-software en utilisant seulement les processeurs ARM; et (ii) une implantation full-hardware en utilisant l’outil HLS pour programmer la partie FPGA. Ces deux versions ont été évaluées avec différentes optimisations du compilateur et trois formats de données: 64/32-bit en virgule flottante, et 32-bit en virgule flottante. L’approche mixe software/hardware a également été évaluée à travers la caractérisation des transferts de données entre le processeur et l’IP ERTS implantée dans la partie FPGA. Quant au convertisseur MMC, sa complexité et sa forte dynamique (dynamique de commutation) impose une implantation exclusivement full-hardware. Celle-ci a également été réalisée à base d’outils HLS.Enfin pour la validation expérimentale de ce travail de Thèse, une maquette à base de convertisseur MMC a été construite dans le but de comparer des mesures du système réel avec les résultats fournis par l’IP ERTS. / This Doctoral Thesis is a detailed study of how suitable System-on-Chip (SoC) devices are for implementing Embedded Real-Time Simulators (ERTS) of electromechanical and power electronic systems. This emerging class of Real-Time Simulators (RTS) are not only expected for Hardware-in-the-Loop (HIL) validations of systems; but they also have to be embedded within the controller to play several roles like observers, parameter estimation, diagnostic, health monitoring, fault-tolerant and sensorless control, etc.The design of these Intellectual Properties (IP) must rigorously consider a set of constraints at different development stages: (i) during the modeling of the system to be real-time simulated; (ii) during the digital realization of the IP; and also (iii) during its final implementation in the digital platform. Thus, the conducted work of this Thesis focuses specially on this last stage and its aim is to evaluate the time/resource performances of recent SoC devices and study how suitable they are for implementing ERTSs. These kind of digital platforms combine powerful general purpose processors, a Field-Programmable Gate Array (FPGA) and other peripherals which make them very convenient for controlling and monitoring a complete system.One of the limitations of these devices is that control engineers are not particularly familiarized with FPGA programming, which needs extensive expertise in order to code these highly sophisticated algorithms using Hardware Description Languages (HDL). Notwithstanding, there exist High-Level Synthesis (HLS) tools which allow to program these devices using more generic programming languages such as C, C++ or SystemC. Moreover, by inserting directives and constraints to the source code, these tools can produce different hardware implementations (e.g. full-combinatorial design, pipelined design, parallel or factorized design, partition or arrange data for a better utilisation of memory resources, etc.).This dissertation is based on the implementation of two representative applications that are well known in our laboratory: a Doubly-fed Induction Generator (DFIG) commonly used as wind turbines; and a Modular Multi-level Converter (MMC) that can be arranged in different configurations and utilized for many different energy conversion purposes. Since the DFIG has low/medium system dynamics (electrical and mechanical ones), both a full-software implementation using solely the ARM processor and a full-hardware implementation using HLS to program the FPGA will be evaluated with different design optimizations and data formats (64/32-bit floating-point and 32-bit fixed-point). Moreover, it will also be investigated whether a system of these characteristics is interesting to be run as a hardware accelerator. Different data transfer options between the Processor System (PS) and the Programmable Logic (PL) have been studied as well for this matter. Conversely, because of its harsh dynamics (switching dynamics), the MMC will be implemented only with a full-hardware approach using HLS tools, as well.For the experimental validation of this Thesis work, a complete MMC test bench has been built from scratch in order to compare the real-world results with its SoC ERTS implementation.

Page generated in 0.0675 seconds