Spelling suggestions: "subject:"more/shear nanoparticles"" "subject:"core/shear nanoparticles""
1 |
Applications of Optical Properties from Nanomaterials for Enhanced Activity of a Titania Photocatalyst under Solar RadiationPickering, Jon W. 16 September 2015 (has links)
In recent years, employing advanced oxidation processes (AOPs) as a means of wastewater remediation has emerged as a promising route towards maintaining a sustainable global water management program. The heterogeneous photocatalytic oxidation process has been of particular interest due to the prospective of utilizing solar radiation as the driving force behind the degradation of pollutants. Of the photocatalyst studied to date, TiO2 remains the most attractive material for environmental applications due to its affordability, stability, biocompatibility and high quantum yield. A key draw back however is roughly only 5% of solar radiation incident on earth can provide the energy required (3.0-3.2 eV) to generate the electron-hole pairs necessary for photo-oxidation. As a means to improve the process under solar irradiance, optical properties such as surface plasmon resonance of metallic nanoparticles and upconversion luminescence of rare earth ions have been exploited for improved light harvesting as well as the generation of more usable UV light from lower energy photons. In order to explore these phenomena and their role in the enhancement of this AOP, the photocatalytic degradation of organic dyes was studied under various conditions employing Degussa P25 TiO2 as the photocatalyst. Ag nanocubes, Ag-Pd core-shell nanoparticles and YAG:Yb+3,Er+3 served as the dopants for the various studies which resulted in enhanced degradation rates, insight into the applicability of utilizing Yb+3 as sensitizing ion under solar radiation and a novel core-shell nanoparticle synthesis.
|
2 |
Synthesis, Functionalization And Characterization Of Gold NanoparticlesSholanbayeva, Zhanar 01 November 2012 (has links) (PDF)
Metallic nanoparticles (NPs) with various elemental composition, size, shape and physical or chemical properties has become active field of research. Among all the metal NPs noble metal ones are receiving much attention due to their special optical properties which make them useful for different applications. Noble metal NPs have bright colors resulting from strong surface plasmon resonance absorption usually in the visible region. The colors are size and shape dependent and provide the tuning of optical properties. The optical properties of NPs are also strongly depending on the nature of the NPs surface which plays a crucial role on chemical sensing. Therefore, surface modification of NPs has become increasingly important. In this study, gold NPs were prepared in aqueous phase by seed-mediated growth method. To enhance the optical properties, surface functionalization was performed by coating NPs with silver. The coating process was achieved by chemical reduction of silver ions on NPs surface. Thickness of silver layer on the NPs were attempted to be controlled by the amount of silver salt added into NPs solution. Coating process of different types of gold NPs (rod, octahedral, star) was done by the same procedure. Moreover, this attempt yielded control over silver layer thickness on sphere, rod and octahedral shaped gold NPs, but not on branched NPs. The structure, composition and spectroscopic properties of Au-Ag core shell NPs were characterized by UV-Vis spectroscopy, Field Emission Transmission Electron Microscope (FE-TEM) and Energy-dispersive X-ray (EDX) studies, Scanning Electron Microscope (SEM), and X-Ray Photoelectron Spectroscopy (XPS). The analysis showed that all NPs studied were successfully coated with silver and promising for further explorations in sensing and imaging applications.
|
3 |
Integration of photosynthetic pigment-protein complexes in dye sensitized solar cells towards plasmonic-enhanced biophotovoltaicsYang, Yiqun January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the tremendous global energy crisis. Development of three generation of solar cells has promoted the best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to develop cost-effective biophotovoltaics that combines natural photosynthetic systems into artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing sensitizer to interface with semiconductive TiO₂ and plasmonic nanoparticles in DSSCs. The goal of this research is to understand the fundamental photon capture, energy transfer and charge separation processes of photosynthetic pigment-protein complexes along with improving biophotovoltaic performance based on this model system through tailoring engineering of TiO₂ nanostructures, attaching of the complexes, and incorporating plasmonic enhancement.
The first study reports a novel approach to linking the spectroscopic properties of nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). The aggregation allowed reorganization between individual trimers which dramatically increased the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being electrostatically immobilized on amine-functionalized TiO₂ surface.
The motivation of the second study is to get insights into the plasmonic effects on the nature of energy/charge transfer processes at the interface of photosynthetic protein complexes and artificial photovoltaic materials. Three types of core-shell (metal@TiO₂) plasmonic nanoparticles (PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC platform built on a unique open three-dimensional (3D) photoanode consisting of TiO₂ nanotrees. Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the LHCII/TiO₂ interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific artificial materials is a promising approach for high-performance biosolar cells.
Furthermore, the final study reveals the mechanism of hot electron injection by employing a mesoporous core-shell (Au@TiO₂) network as a bridge material on a micro-gap electrode to conduct electricity under illumination and comparing the photoconductance to the photovolatic properties of the same material as photoanodes in DSSCs. Based on the correlation of the enhancements in photoconductance and photovoltaics, the contribution of hot electrons was deconvoluted from the plasmonic near-field effects.
|
4 |
Ingénierie macromoléculaire pour la synthèse de particules de latex par polymérisation en miniémulsion / Macromolecular engineering to design latex particles by miniemulsion polymerizationHuda, Sfeir 05 March 2014 (has links)
Au cours de ce travail de thèse, nous avons étudié la synthèse de particules de latex par polymérisation en miniémulsion, un procédé de polymérisation en milieu aqueux dispersé. Nous avons synthétisé avec succès et de manière contrôlée des particules de latex de polystyrène de masse molaire élevée (Mn > 30 000 g.mol-1) par polymérisation radicalaire contrôlée par les nitroxydes (NMP) en miniémulsion, en présence et en absence de tensio-actif moléculaire. Des latex stables présentant des diamètres de l’ordre de 150 – 200 nm ont été synthétisés. Une seconde partie de ce travail de thèse est dédié à la transposition de la polymérisation radicalaire contrôlée par les nitroxydes amorcée depuis la surface (« surface-initiated NMP ») d’un procédé en masse vers un procédé en milieu aqueux dispersé (miniémulsion) en vue de synthétiser des nanoparticules cœur@écorce de type silica@polystyrène. La dernière partie du travail de thèse est consacrée à la synthèse de stabilisants polymères et plus précisément à la synthèse de copolymères amphiphiles à base de dextrane ou de poly(acide acrylique) modifiés de manière hydrophobes par des terpènes. L’efficacité de stabilisation de tels copolymères synthétisés à partir de bio-resources a été étudiée au travers leur capacité à stabiliser la polymérisation en miniémulsion du styrène. Tout au long de ce travail, les caractéristiques macromoléculaires des polymères ainsi que la taille et la morphologie des particules ont été caractérisées respectivement par chromatographie d’exclusion stérique, diffusion dynamique de la lumière et microscopie (SEM, TEM, AFM). / During the work of this PhD, we investigated the synthesis of latex particles by miniemulsion, an aqueous dispersed medium process. We managed to synthesize in a controlled manner high molar mass (Mn > 30 000 g.mol-1) polystyrene latex particles via nitroxide mediated radical polymerization (NMP) in miniemulsion in both the presence and absence of molecular surfactant. Stable latex with final diameters within the range of 150-200 nm were synthesized. A second part of the PhD work was devoted to the transposition of surface-initiated NMP from bulk polymerization to polymerization in aqueous dispersed media (miniemulsion) in order to synthesize silica@polystyrene core@shell hybrid nanoparticles. The last part of the PhD work was dedicated to the synthesis of polymeric stabilizers, more precisely to the synthesis of amphiphilic copolymers based on dextran or poly(acrylic acid) polymers hydrophobically modified by terpenes. The stabilization efficiency of such copolymers synthesized from renewable resources to stabilize styrene miniemulsion polymerization was investigated. During this work, we characterized the macromolecular features of polymers along with the size and the morphology of the final particles by respectively size exclusion chromatography (SEC), dynamic light scattering (DLS) and microscopy (SEM, TEM, AFM).
|
5 |
The Development of an Integrated Simulation Model on Understandings on the Interaction between Electromagnetic Waves and NanoparticlesWang, Xiaojin 01 July 2019 (has links)
To investigate the interaction between nanoparticles and electromagnetic waves, a numerical simulation model based on FEM was built in this thesis. Numerical simulation is an important auxiliary research method besides experiments. The optical properties of nanoparticles consist of scattering, absorption, and extinction, and in the case of nanoparticle suspension, the transmission is also involved. This thesis addressed two typical applications based on the established model, one was regarding the nanofluids for solar energy harvesting, and the other was regarding the optical properties of atmospheric soot. In the case of the nanofluids solar energy harvesting, the established model provided a convenient and rapid screening of potential nanoparticles and nanofluids candidates for solar energy harvesting. A core-shell structure nanoparticle, using Cu as the core material in a diameter of 90 nm coated with 5 nm thickness graphene, exhibited a better photothermal property under the solar radiation. In the second case regarding atmospheric soot, the established model provided an efficient method for understandings on the optical properties and warming effects of realistic soot particles. It was found that the sizes and material characteristics of soot, would greatly affect their scattering and absorption of light. Moreover, two submodels were introduced and integrated, which can better predict behaviors of real atmospheric soot involving their core-shell structures (moisture or organic condensates) and their fractal agglomerate structures. In conclusion, the established model helps to understand the interaction between nanoparticles and electromagnetic waves, which shows great potentials of wide applications.
|
6 |
Silver nanostructures: chemical synthesis of colloids and composites nanoparticles, plamon resonance properties and silver nanoparticles monolayer films prepared by spin-coatingTorres Heredia, Victor Elias 08 November 2011 (has links)
El presente trabajo tiene como objetivo desarrollar en solución acuosa y a tem-peratura ambiente, rutas de síntesis química coloidal de nanopartículas de plata y nano-partículas compuestas estables. Se obtienen nanopartículas de plata reproducibles, con un control morfológico de tamaño y forma durante el proceso de síntesis. Llevamos a cabo el estudio de las propiedades ópticas (espectros de absorción de las resonancias de plasmones superficiales (SPR)) que caracterizan a una determinada forma y tamaño. El análisis incluye estructuras nanométricas de plata de diferentes tamaños, en ambientes diversos y formas diferentes, como esferas, prolates, y prismas de diferente sección transversal, etc
Se ha demostrado que la síntesis química produce coloides de nanopartículas de plata esféricas y anisotrópicas estables. La morfología y estabilidad de las nanopartícu-las coloidales son estudiadas mediante técnicas de espectroscopia y microscopía elec-trónica. El rol y concentración necesaria de cada uno de los reactivos para producir co-loides estables mediante síntesis química son determinadas. Se ha demostrado que, con-trariamente a las opiniones actualmente expresadas en la literatura, es posible controlar el tamaño de las nanopartículas de plata y obtener coloides de nanopartículas de plata esféricas y anisotrópicas estables por largo tiempo, utilizando una ruta de síntesis quí-mica sencilla y una baja concentración de reactivos estabilizadores (PVP).
Recubrimientos de nanopartículas esféricas de plata estabilizadas con polivinilpirroli-dona (PVP) sobre substratos de vidrio óptico son preparados mediante el proceso de spin-coating y un posterior tratamiento térmico.
Diferentes morfologías tipo core-shell de Ag@SiO2 son preparados mediante un método químico simple y rápido, sin necesidad de adicionar reactivos de acoplamiento o modificadores superficiales de la sílice. Proponemos mecanismos de reacción para la preparación de diferentes nano-estructuras tipo core-shell de plata-sílice. Las nanopartí-culas compuestas de sílice-plata muestran unas propiedades de absorción de resonancia plasmónica muy evidentes. El trabajo de éste capítulo ha sido realizado en colaboración con Juan C. Flores, quien desarrolló la ruta de síntesis como parte de sus estudios de doctorado.
Por último, una modificación del método sol-gel es empleada para la prepara-ción de nanopartículas de TiO2, y partículas compuestas de Ag@TiO2, SiO2@TiO2-Ag y SiO2@Ag@TiO2. Diferentes morfologías tipo core-shell son preparadas mediante un método químico simple y rápido sobre un substrato óxido, sin necesidad de adicionar agentes de acoplamiento o modificaciones superficiales. Las evidentes propiedades de absorción plasmónica de las nanopartículas de plata mostradas por las partículas com-puestas han demostrado la presencia de plata metálica sobre la titania, sin la posterior oxidación de la capa de plata por el contacto directo con la titania (TiO2). Esta evidencia es confirmada por la técnica de microscopía electrónica de alta resolución. Las propie-dades de absorción plasmónica de las partículas compuestas hacen a estos materiales muy prometedores para aplicaciones foto-catalíticas. / The present work aims to develop chemical synthesis routes of stable colloidal silver nanoparticles and composites nanoparticles in aqueous solution at room tempera-ture. We obtain reproducible morphological control of silver nanoparticles size and shape during synthesis solely by solution chemistry and carry out the study of the opti-cal properties (surface plasmon resonances (RPS) absorption spectra) which character-ize a specific shape and size. The analysis includes silver nanosized bodies of different size, in diverse environments and of various shapes, as spheres, prolates, and prisms of different transversal section, etc.
Synthetic wet chemistry routes yielding stable colloids of spherical and aniso-tropic silver nanoparticles are demonstrated, and the morphology and stability of the colloidal nanoparticles studied extensively through spectroscopy and electron micros-copy techniques. The role of each reagent and the concentrations required to obtain sta-ble colloid via these wet chemical routes is determined. It was shown that, contrary to commonly expressed opinions in the literature, it is possible to control the particle size of silver nanoparticles and obtain long-term sable colloids of both spherical and aniso-tropic silver nanoparticles using simple chemical routes and low concentration of stabi-lizing agent (PVP).
Films of polyvinylpyrrolidone (PVP) stabilized spherical silver nanoparticles are also prepared, by using spin coating on standard optical glass plates and subsequent thermal processing.
Different core-shell type morphologies of Ag@SiO2 are also produced using a simple and rapid chemical method, without using added coupling agents or surface modifications of silica. We propose reaction mechanisms for the formation of the dif-ferent silica-silver core-shell nanostructures. The silica-silver composite nanoparticle display clear plasmonic resonance absorption properties. This chapter work has been done in collaboration with PhD student Juan C. Flores who developed the synthesis route as part of his doctoral studies.
Finally, a sol-gel chemistry approach was used to fabricate nanoparticles in the systems TiO2, Ag@TiO2, Ag@TiO2-SiO2 and TiO2@Ag@SiO2. Different core-shell morphologies are produced using a simple and rapid chemical method. without using added coupling agents or surface modifications of the oxide substrate. Clear silver na-noparticle plasmonic absorption properties shown by the composite nanoparticles demonstrate the formation of metallic Ag, without the oxidation of Ag nanoshell in di-rect contact with TiO2, evidence confirmed also by high resolution electron microscopy. The plasmonic absorption properties of the composites nanoparticles make them a promising material for photocatalytic applications.
|
7 |
Generation of Core/shell Nanoparticles with Laser AblationJo, Young Kyong 2012 August 1900 (has links)
Two types of core/shell nanoparticles (CS-NPs) generation based on laser ablation are developed in this study, namely, double pulse laser ablation and laser ablation in colloidal solutions. In addition to the study of the generation mechanism of CS-NPs in each scheme, the optical properties of designed CS-NPs are determined with UV-VIS-NIR spectroscopy and EM field simulation.
In the first scheme, which is double pulse laser ablation, two laser beams are fired in a sequence on two adjacent targets with different material. We have successfully demonstrated the generation of Sn/Glass, Zn/Glass, Zn/Si, Ge/Si, and Cu/Zn CS-NPs. Key factors affecting the generation of CS-NPs are (1) surface tensions of the constructing materials affecting the associated Gibbs free energy of CS-NPs, (2) physical properties of selected background gases (i.e., He and Ar), (3) delay time between two laser pulses, and (4) the amount of laser energy.
The second scheme examined for the generation of CS-NPs is through laser ablation of solid targets in colloidal solutions. Compared to the double pulse laser ablation, this second approach provides better control of the size and shape of the resulting CS-NPs. Two colloidal solutions, namely, Au and SiO2 colloidal solution are applied in the second scheme. Key factors affecting the formation of CS-NPs with the second scheme and are (a) the adhesion energy between the shell and the core material, (b) the diameter of the core and (c) the laser ablation time and the laser energy.
Red shift of absorption peaks are measured in both SiO2/Au and SiO2/Ag colloids compared with pure nanoparticles (NPs). The amount of red-shift is very sensitive to the shell thickness of the CS-NPs. The same red shift is reproduced with the corresponding full wave analysis. The observed red shift can be attributed to the additional surface plasmon resonance at the interface of metal/dielectric of the CS-NPs compared with pure nanoparticles. Through adjusting the material and size combination, the absorption peak of the CS-NPs can be tuned in a limit range around the intrinsic absorption peak of the metal of the CS-NPs. The freedom of adjusting the absorption peak makes CS-NPs is favorable in bio and optical applications.
|
8 |
SURFACE FUNCTIONALIZATION OF COLLOIDAL NANOPARTICLES THROUGH LIGAND EXCHANGE REACTIONSVamakshi Yadav (13105254) 18 July 2022 (has links)
<p> </p>
<p>Surface functionalization of metallic nanoparticles is an attractive route to tailor the ensemble geometry and redox properties of active sites in heterogeneous catalysts. However, it is challenging to generate well-defined interfaces through conventional impregnation and one-pot colloidal synthesis methods. In this work, we utilize ligand exchange reactions for post synthetic surface modification of colloidal nanoparticles to generate unique core-shell and surface alloy structures. We use halometallate and metal chalcogenide complexes to create surface sites that are active for electrocatalytic hydrogen evolution reaction (HER). </p>
<p>We synthesize a self-limiting monolayer of metal chalcogenides on colloidal Au nanoparticles through biphasic ligand exchange reaction between ammonium tetrathiomolybdate (NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub> complex and Au nanoparticles. Through a combination of spectroscopy techniques and computational methods, we show that strong Au-S interactions introduce electronic and geometric distortion to the geometry and bond metrics of MoS<sub>4</sub><sup>2- </sup>complex. Moreover, proximal MoS<sub>4</sub> units adsorbed on the Au surface interlink to form small MoSx oligomers with highly active bridging disulfide sites. Consequently, these core-shell AuMoS<sub>4</sub> nanoparticles exhibit significantly higher HER activity than MoS<sub>4</sub><sup>2-</sup> supported on non-interacting carbon supports under highly acidic electrolyte conditions. Although post catalysis characterization reveals partial hydrolysis of surface adsorbed MoSx species, stable HER activity under bulk electrolysis condition indicates that active sites remain persistent. </p>
<p>In an effort to extend these ligand exchange reactions to create metal/metal interfaces on other coinage metal nanoparticles such as Ag, we design metal-ligand coordination complexes to mitigate undesired galvanic replacement reactions. By varying the strength and number of coordinating ligands, we fine-tune the redox potential of oxidized noble metal precursors and confine the deposition of noble metals to a few surface layers of the Ag nanoparticles. We utilize organic amine and phosphine ligands to generate Ag@AgM core-shell nanoparticles, where M = Pd, Pt, and Au. Surface alloy or pure metal shells of Pd and Pt on Ag nanoparticles generated through this ligand-based strategy exhibited high precious metal atom utilization in electrocatalytic hydrogen evolution reaction. </p>
|
9 |
CORE-SHELL NANOPARTICLES: SYNTHESIS, ASSEMBLY, AND APPLICATIONSJean, Deok-im 28 July 2013 (has links)
No description available.
|
10 |
Synthesis, Characterization and Application of SERS-active Metal NanoparticlesZhou, Yan 27 May 2016 (has links)
No description available.
|
Page generated in 0.0892 seconds