Spelling suggestions: "subject:"more@shell"" "subject:"more@thell""
191 |
Wide tuning of electronic properties in strained III-V core/shell nanowiresBalaghi, Leila 09 November 2021 (has links)
The monolithic integration of III-V semiconductors on Si substrates is a part of a long-term technological roadmap for the semiconductor industry towards More-than-Moore technologies. Despite of the different lattice constants and thermal expansion coefficients, research efforts over the last two decades have shown that III-V crystals with a high structural quality can be grown epitaxially in the form of nanowires directly on Si using CMOS-compatible (Au-free) methods. Among other III-V compounds, InxGa1-xAs is of the special interest for the use in infrared photonics and high-speed electronics due to its tunable direct bandgap and low electron effective mass, respectively. For comparison, InxGa1-xAs thin films are typically grown on lattice-matched InP substrates with a limited range of compositions at around x=0.52. The realization of InxGa1-xAs nanowires on Si, though, has been proved challenging owing to the limited In-content when the nanowires are grown Ga-catalyzed or the high density of stacking faults when the nanowires are grown catalyst-free.
In this work, the use of highly lattice-mismatched GaAs/InxGa1-xAs and GaAs/InxAl1-xAs core/shell nanowires on Si(111) substrates have been studied as an alternative to InxGa1-xAs nanowires. The core/shell mismatch strain and its accommodation within the nanowires plays an important role in the growth, the structural, and the electronic properties of the nanowires. A key parameter in this work was the unusually small diameter of 20 – 25 nm of the GaAs core.
First, the strain-induced bending of the nanowires during the growth of the shell by molecular beam epitaxy was investigated. It was apparent that the nanowires bend as a result of a preferential incorporation of In adatoms on one side of the nanowires. To obtain straight nanowires with symmetric shell composition and thickness around the core, it was necessary to choose relatively low growth temperatures and high growth rates that limited the surface diffusivity of In adatoms.
Second, the strain accommodation in straight nanowires was investigated as a function of the shell thickness and composition using a combination of Raman scattering spectroscopy and X-ray diffraction. For a fixed shell composition of x=0.20 and small enough shell thicknesses, the strain in the shell is compressive and decreases progressively as the shell grows thicker. On the other hand, the strain in the core is tensile with hydrostatic character and increases with shell thickness. Finally, for shell thicknesses larger than 40 nm, the shell becomes strain-free, whereas the strain in the core saturates at 3.2% without any dislocations. For a fixed shell thickness of 80 nm, the strain in the core was further increased by increasing the In-content in the shell, reaching values as high as 7% for x=0.54. A plastic relaxation via misfit dislocations was observed only for the next highest In-content of x=0.70.
In agreement to theoretical predictions, the tensile strain in the core resulted in a large reduction of the GaAs bandgap (as measured by photoluminescence spectroscopy), up to approximately 40% of the strain-free value. A similar reduction in electron effective mass is also expected. The transport properties of electrons inside the strained GaAs core were assessed by optical-pump terahertz-probe spectroscopy. Quite high mobility values of approximately 6100 cm2/Vs at 300 K for a carrier concentration of 9×1017 cm−3 were measured, which are the highest reported in the literature for GaAs nanowires, but also higher than the values for unstrained bulk GaAs.
The importance of the results in this work is two-fold. On the one hand, strain-free InxGa1-xAs nanowire shells were grown on Si substrates with x up to 0.54 and thicknesses well beyond the critical thickness of their thin film counterparts. Such shells could potentially be employed as conduction channels in high electron mobility transistors (HEMTs) integrated in Si platforms. On the other hand, highly tensile-strained GaAs cores with electronic properties like those of InxGa1-xAs thin films were obtained. In this case, the results demonstrate, that GaAs nanowires can be suitable for photonic devices across the near-infrared range, including telecom photonics at 1.3 and potentially 1.55 μm, as well as for high-speed electronics. GaAs as a binary material is expected to be advantageous compared to InxGa1-xAs due to the absence of structural imperfections typically present in ternary alloys.
Finally, to explore the potential of the core/shell nanowires as HEMTs, self-consistent Schrödinger-Poisson calculations of two different modulation-doped heterostructures were performed. In the case of a strained GaAs core overgrown by an unstrained InxGa1-xAs shell and an additional unstrained Si-doped InxAl1-xAs shell, the possibility to form a cylindrical-like two-dimensional electron gas inside the InxGa1-xAs shell was found. In the alternative case of a strained GaAs core overgrown by an unstrained Si-doped InxAl1-xAs shell, it was found that it is possible to form a quasi-one-dimensional electron gas at the center of the core. Both structures are the subject of ongoing research.:1 Introduction 1
2 Fundamentals and state-of-the-art 7
2.1 Electronic and structural properties of III-V semiconductors 7
2.2 Growth of III-V nanowires on Si 20
2.3 Core/shell heterostructure nanowires 29
2.4 Strain in epilayers and core/shell nanowires 36
2.5 Strain engineering in core/shell nanowires and its effect on
band parameters 46
2.6 Modulation-doped III-V semiconductor heterostructures 56
3 Methods 61
3.1 Optical and electron microscopes 61
3.2 X-ray diffraction 64
3.3 Raman scattering spectroscopy 65
3.4 Photoluminescence spectroscopy 75
3.5 Optical-pump terahertz-probe spectroscopy and photoconductivity in
semiconductors 77
3.6 Device processing 82
3.7 Semiconductor nanodevice software “nextnano” 85
3.8 MBE for crystal growth and core/shell nanowire growth 86
4 Results and discussions 91
4.1 Structural, compositional analyses of straight nanowires and coherent growth
limit 91
4.2 Bent nanowires 95
4.3 Strain analyses in core/shell nanowires 97
4.3.1 Dependence of strain on shell thickness 97
4.3.2 Dependence of strain on the shell chemical composition 102
4.3.3 Dependence of strain on the core diameter 105
4.4 Strain-induced modification of electronic properties 106
4.5 Strain-enhanced electron mobility of GaAs nanowires higher than
the bulk limit 114
4.6 Towards high electron mobility transistors 123
5 Conclusion and outlook 129
Bibliography 131
List of abbreviations I
List of Symbols III
List of publications VII
List of conference contributions VIII
Acknowledgements X
|
192 |
Development of multifunctional microgels for novel biomedical applicationsKodlekere, Purva Ganesh 07 January 2016 (has links)
A range of microgels with two different functionalities were synthesized, and their utility in novel bioapplications was examined. Cationic microgels with varying properties were developed by tuning synthesis conditions. Their size and primary amine content was analyzed, and one microgel system was selected as a model construct. Its primary amine groups were conjugated to two dyes with properties favorable for utilization as contrast agents in photoacoustic imaging. The concentration of contrast agent in single particles was determined. The implications of a high local dye concentration in the generation of high intensity photoacoustic signals, are discussed. The second bioapplication involved the targeted delivery of fibrinolytics to fibrin clots, in order to bring about dissolution of abnormal thrombi. For this purpose, core/shell microgels with carboxylic acid groups in their shells were synthesized in three size ranges. Following this, their dimension based differential localization in and around porous fibrin clots was examined. Fibrin-specific peptides were then conjugated onto the shells of these particles and the conjugates were shown to demonstrate strong interactions with the fibrin clots. The microgels conjugated to the peptide with the highest binding affinity to fibrin, were observed to bring about disruption of fibrin clots, merely through interference in the dynamic interactions among clot fibers, due to the equilibrium nature of the fibrin polymer. The implications of these novel results and future studies required to facilitate a better understanding of the phenomena involved, are discussed.
|
193 |
Multicomponent Clusters/Nanoparticles : An Investigation of Electronic and Geometric Properties by Photoelectron SpectroscopyZhang, Chaofan January 2013 (has links)
Clusters/nanoparticles are aggregates of a “small” number of building blocks, atoms or molecules, ranging from two up to millions of atoms. Two main groups of clusters have been studied using photoelectron spectroscopy based on synchrotron radiation. They are dry/wet alkali-halide clusters, including pure water clusters, and metal-based nanoparticles. For the dry alkali halide clusters, analysis of the data and theoretical modeling has allowed us insights into the local electronic properties at nanoscale: a change of polarizability of ions in the alkali-halide clusters due to the varying environment has been suggested. The study of the wet salt clusters shows that the alkali-halides are already solvated at the nanoscale reached by water clusters doped with salt vapor. The photoelectron angular distribution of water cluster shows lower anisotropy parameters as compared to the separate monomers. A model based on intracluster scattering has been built to partly explain the reduction. In the last part of the thesis, metal-based multi-component nanoparticles have been produced by self-assembly processes using reactive magnetron sputtering. Depending on the specific metal element, oxidation processes have been applied before or after the aggregation. Clearly radial distributions such as core-shell and “sandwich-like” structures have unambiguously determined by photoelectron spectroscopy.
|
194 |
Rare-gas Clusters Studied by Electron Spectroscopy : Structure of Heterogeneous Clusters and Effects of Electron Scattering on Auger DecayLundwall, Marcus January 2007 (has links)
In this Thesis experimental studies of nano-clusters using synchrotron radiation based photoelectron (UPS and XPS) and Auger Electron Spectroscopy (AES) are presented. The investigations may be divided into two parts where the first reports on the structure of heterogeneous two component clusters, and the second concerns electronic decay processes. Using photoelectron spectroscopies as investigative tools the radial composition of heteroclusters of argon mixed with xenon, krypton or neon has been determined. Two methods of heterogeneous cluster production were employed: co-expansion and doping/pick-up. By analyzing the line shapes, energy positions, and widths of the spectral cluster features the radial composition of the clusters produced by co-expansion were found to form close-to-equilibrium structures, placing the component with larger cohesive energy in the cluster core while the second component was to varying degree segregated toward the surface. By instead using the doping/pick-up technique the opposite radial structures, i.e. far-from-equilibrium structures, may be formed. In the case of argon/krypton clusters a similar surface structure is formed regardless of production technique. The second part of the Thesis concerns post-ionization decay processes. Experimental evidence for the Interatomic Coulombic Decay process, a theoretically predicted decay channel, is presented in a study of homogeneous neon clusters. The time scale of the decay was determined to 6±1 fs for bulk atoms and >30 fs for surface atoms in the neon cluster, showing the connection between local geometry and dynamics of the decay. Another channel for electronic relaxation is Auger decay. This Thesis presents a method of disentangling the spectral surface and bulk responses from clusters in Auger spectra. Studies of argon clusters show that the AES technique is more surface sensitive than XPS, even at the same electron kinetic energy. Furthermore, the effect scattering of the photoelectron has on the Auger spectra was investigated. Special effort was put into explaining an experimentally observed photon energy dependent intensity appearing on the high-kinetic energy side on the Auger signal. We propose that this intensity is due to a solid state-specific photoelectron recapture process we name Pre-Auger Recapture (PAR), which affects the kinetic energy of the Auger electrons.
|
195 |
Designstrategien für photoschaltbare Polymer-Nanokomposite / Design strategies for photoswitchable polymer nanocompositesHübner, Dennis 24 October 2016 (has links)
Durch die Funktionalisierung von Silica- und Gold-Nanopartikeln mit einem neu entwickelten photoschaltbaren Polymer wurden gezielt selbst¬organisierte Architekturen aus Polymer-Nanokompositen aufgebaut.
Silica-Oberflächen wurden mit Transferagenzien für eine oberflächeninitiierte reversible Additions–Fragmentierungs-Ketten-transferpolymerisation (engl. reversible addition–fragmentation chain transfer (RAFT-) Polymerisation) modifiziert und systematisch untersucht. Dazu wurden Mono-, Di- und Trialkoxysilylether als Ankergruppen in die chemische Struktur der RAFT-Agenzien integriert. Die Analyse von funktionalisierten planaren Substraten durch Rasterkraftmikroskopie hat gezeigt, dass di- und trifunktionelle Ankergruppen als vernetzte Aggregate auf der Oberfläche gebunden werden, wenn die Immobilisierung in Toluol durchgeführt wird. Als Ursache dafür wurde durch dynamische Lichtstreuung (DLS) eine, im Vergleich zur Reaktion mit der Oberfläche, beschleunigte Aggregation der Ankergruppen identifiziert. Die Vernetzung konnte durch die Verwendung von 1,2-Dimethoxyethan als Lösungsmittel unterbunden werden, wodurch besser definierte Oberflächenstrukturen erhalten wurden. Diese wurden ebenfalls durch Monoalkoxysilylether erreicht, die unabhängig vom Lösungsmittel keine Möglichkeit zur Vernetzung bieten. Die Charakterisierung funktionalisierter sphärischer Silica-Nanopartikel mittels Transmissionselektronen¬mikroskopie (TEM) bestätigten diese Ergebnisse. Dadurch wurde gezeigt, dass vernetzte Ankergruppen zu der Aggregation von Silica-Nanopartikeln führen.
An den funktionalisierten Partikeln wurden RAFT-Polymerisationen durchgeführt, deren Produkte durch Gel-permeations¬chromatographie und Thermogravimetrie analysiert wurden. Dabei wurde gezeigt, dass die Beladungsdichte des Polymers nicht ausschließlich mit der Konzentration der RAFT-Agenzien auf der Oberfläche steigt, sondern vor allem mit deren Erreichbarkeit für Makroradikale. Zudem wurde festgestellt, dass der Anteil niedermolekularer Nebenprodukte unabhängig vom Aggregationgrad der verwendeten Ankergruppen ist.
Nach diesen Prinzipien maßgeschneiderte Silica- und Gold-Nanopartikel wurden in einer Blockcopolymermatrix dispergiert und mittels TEM analysiert. Durch Mikrophasenseparation der Matrix konnten erstmals RAFT-Polymer-funktionalisierte Nanopartikel gezielt und selektiv in eine Phase integriert werden. Zusätzlich wurde beobachtet, dass selektiv Silica-Partikel mit kleinen Durchmessern aus der eingesetzten Größenverteilung eingebaut wurden.
Neben dem Design von Nanopartikeln wurde ein photoschaltbares Polymer (PAzoPMA) für die Anwendung in Polymer-Nanokompositen entwickelt. Durch die reversible Licht-induzierte transcis-Isomer¬isierung der schaltbaren Azobenzol-Einheiten des Polymers, nimmt sowohl die molekulare Größe ab als auch das Dipolmoment deutlich zu. Diese Änderungen konnten durch Wasser-Kontaktwinkel-Analysen, DLS und Ionenmobilitäts-Massenspektrometrie charakterisiert werden.
Durch die Funktionalisierung von Silica- bzw. Gold-Partikeln mit diesem Polymer wurden photoschaltbare Nanokomposite synthetisiert, indem PAzoPMA über RAFT-Agenzien an die Oberfläche gebunden wurde. Die Bestrahlung einer Dispersion dieser Hybridpartikel mit ultraviolettem Licht induzierte die transcis-Isomerisierung, die eine Selbstorganisation der Primärpartikel zur Folge hatte. Insbesondere funktionalisierte Gold-Nanopartikel aggregierten zu definierten, sphärischen Überstrukturen, was durch DLS und optische Absorptions-spektroskopie belegt wurde. Durch letztere konnte außerdem gezeigt werden, dass der geschaltete Zustand länger stabil ist als bei bisher literaturbekannten Systemen mit Kleinmolekülen als Photoschalter. Eine weitere Stärke des entwickelten Systems wird mittels TEM-Analyse verdeutlicht. Die über die molare Masse des PAzoPMAs in der Partikelhülle einstellbaren Abstände der Primärpartikel, innerhalb dieser Überstrukturen, verdeutlichen das große Potential des Systems.
|
196 |
Investigating the Electron Transport and Light Scattering Enhancement in Radial Core-Shell Metal-Metal Oxide Novel 3D Nanoarchitectures for Dye Sensitized Solar CellsSahu, Gayatri 18 May 2012 (has links)
Dye-sensitized solar cells (DSSCs) have attained considerable attention during the last decade because of the potential of becoming a low cost alternative to silicon based solar cells. Electron transport is one of the prominent processes in the cell and it is further a complex process because the transport medium is a mesoporous film. The gaps in the pores are completely filled by an electrolyte with high ionic strength, resulting in electron-ion interactions. Therefore, the electron transport in these so called state-of-the-art systems has a practical limit because of the low electron diffusion coefficient (Dn) in this mesoporous film photoanode. This work focuses on the influence of the advanced core-shell nanoarchitecture geometry on electron transport and also on the influence of electron-ion interactions. In order to achieve the proposed goals, DSSCs based on ordered, highly aligned, 3D radial core-shell Au-TiO2 hybrid nanowire arrays were fabricated, using three different approaches. J-V, IPCE, and EIS characteristics were studied. The efficiency, light scattering and charge transport properties of the core-shell nanowire based devices were compared to TiO2 nanotube as well as TiO2 mesoporous film based DSSCs. The Au nanowires inside the crystalline TiO2 anatase nanoshell provided a direct conduction path from the TiO2 shell to the TCO substrate and improved transport of electrons between the TiO2 and the TCO. The optical effects were studied by IPCE measurement which demonstrated that Au-TiO2 nanowires showed an improved light harvesting efficiency, including at longer wavelengths where the sensitizer has weak absorption. The metal nanostructures could enhance the absorption in DSSCs by either scattering light enabling a longer optical path-length, localized surface plasmon resonance (LSPR) or by near-field coupling between the surface plasmon polariton (SPP) and the dye excited state. Rapid, radial electron collection is of practical significance because it should allow alternate redox shuttles that show relatively fast electron-interception dynamics to be utilized without significant sacrifice of photocurrent. A combination of improved electron transport and enhanced light harvesting capability make Au-TiO2 core-shell nanowire arrays a promising photoanode nanoarchitecture for improving photovoltaic efficiency while minimizing costs by allowing thinner devices that use less material in their construction.
|
197 |
Template-Assisted Fabrication of Ferromagnetic NanomaterialsTripathy, Jagnyaseni 18 December 2014 (has links)
Abstract
Template assisted deposition was used to produce various nanomaterials including simple nanowires, nanorods, multi-segmented metal nanowires, core-shell nanowires, alloy and polymer wires and tubes. Anodized aluminum oxide (AAO) membranes were used as templates for the growth of the various structures using an electrochemical deposition method and also by wetting the porous templates. In the electrochemical deposition method, the pore size of the templates affects the rate of synthesis and the structures of the nanomaterials while in the wetting method, the viscosity and reaction time in the polymer solution influence the structures of the nanomaterials.
A conventional two-step anodization procedure was used to synthesize thick AAO templates with porous hexagonal channels at a constant applied voltage and temperature. A maximum thickness of over 180 µm oxide layer could be fabricated using mild anodization at 60 V and 80 V. Compared to conventional mild anodization, these conditions facilitated faster growth of oxide layers with regular pore arrangement.
Polyethylene glycol (PEG) containing ferromagnetic nanowires were synthesized using template assisted electrochemical deposition method. During the synthesis, simultaneous deposition of polymer and metal ions resulted nanowires coated with a uniform layer of PEG without interfering with the structure and magnetic properties of the nanowires.
PEG-coated Ni nanowires were embedded in polyethylene diacrylate (PEGDA) matrix after the removal of the AAO templates. Comparison of results with and without a magnetic field during embedding showed that the presence of magnetic field supported embedding of nanowire arrays in polymer.
Influence of using AAO templates with several pore diameters for the synthesis of bimetallic nanowires were studied by growing Ni-Fe and Ni-Co bi-metallic nanowires. At a constant applied current by using templates with a pore diameters of 60 nm alloy formed while with a pore diameter of 130 nm core-shell nanowires formed.
Polyvinylidene fluoride (PVDF) films and nanotubes were synthesized using a solution recrystallization method that favored the formation of piezoelectric β phase thin films. Variation in the concentration of polymer in the mixture solution allowed synthesis of different types of structures such as PVDF composites, nanorods and nanocrystals with tunable morphologies.
Keywords: One-dimensional structures, electrodeposition, porous alumina, ferromagnetic nanostructures, magnetic core-shell nanowires, alloys, polymer composite, stimuli-active, PEGDA, azobenzene, and PVDF.
|
198 |
Problématique de la polarité dans les nanofils de ZnO localisés, et hétérostructures reliées pour l’opto-électronique / The issue of polarity in well-ordered ZnO nanowires, and their related heterostructures for optoelectronic applicationsCossuet, Thomas 17 December 2018 (has links)
Le développement d’architectures nanostructurées originales composées de matériaux abondants et non-toxiques fait l’objet d’un fort intérêt de la communauté scientifique pour la fabrication de dispositifs fonctionnels efficaces et à bas coût suivant des méthodes d’élaborations faciles à mettre en œuvre. Les réseaux de nanofils de ZnO élaborés par dépôt en bain chimique sont, à ce titre, extrêmement prometteurs. L’étude des propriétés de ces réseaux de nanofils et leur intégration efficace au sein de dispositifs nécessitent toutefois un contrôle avancé de leurs propriétés structurales et physiques, notamment en terme de polarité, à l’aide de techniques de lithographies avancées.Le dépôt en bain chimique des nanofils de ZnO est d’abord effectué sur des monocristaux de ZnO de polarité O et Zn préparés par lithographie assistée par faisceau d’électrons. Par cette approche de croissance localisée, un effet significatif de la polarité des nanofils de ZnO est mis en évidence sur le mécanisme de croissance des nanofils, ainsi que sur leurs propriétés électriques et optiques. La possibilité de former des nanofils de ZnO sur des monocristaux de ZnO semipolaires nous a de plus permis d’affiner la compréhension de leurs mécanismes de croissance sur les couches d’amorces polycristallines de ZnO. Par la suite, le dépôt des nanofils de ZnO en bain chimique est développé sur des couches d’amorces polycristallines de ZnO préparés à l’aide de la lithographie assistée par nano-impression. Suivant cette approche, des réseaux de nanofils de ZnO localisés sont formées sur de grandes surfaces, ce qui permet d’envisager leur intégration future au sein de dispositifs fonctionnels.Les nanofils de ZnO sont ensuite combinés avec des coquilles semiconductrices de type p par des méthodes de dépôt chimique en phase liquide ou en phase vapeur afin de fabriquer des hétérostructures cœurs-coquilles originales. Le dépôt de couches successives par adsorption et réaction (SILAR) d’une coquille absorbante de SnS de phase cubique est optimisé sur des nanofils de ZnO recouverts d’une fine couche protectrice de TiO2, ouvrant la voie à la fabrication de cellules solaires à absorbeur extrêmement mince. Enfin, un photo-détecteur UV autoalimenté prometteur, présentant d’excellentes performances en termes de réponse spectrale et de temps de réponse, est réalisé par le dépôt chimique en phase vapeur d’une coquille de CuCrO2 sur les nanofils de ZnO. / Over the past decade, the development of novel nanostructured architectures has raised increasing interest within the scientific community in order to meet the demand for low-cost and efficient functional devices composed of abundant and non-toxic materials. A promising path is to use ZnO nanowires grown by chemical bath deposition as building blocks for these next generation functional devices. However, the precise control of the ZnO nanowires structural uniformity and the investigation of their physical properties, particularly in terms of polarity, remain key technological challenges for their efficient integration into functional devices.During this PhD, the chemical bath deposition of ZnO nanowires is combined with electron beam lithography prepared ZnO single crystal substrates of O- and Zn-polarity following the selective area growth approach. The significant effects of polarity on the growth mechanism of ZnO nanowires, as well as on their electrical and optical properties, are highlighted by precisely investigating the resulting well-ordered O- and Zn-polar ZnO nanowire arrays. An alternative nano-imprint lithography technique is subsequently used to grow well-ordered ZnO nanowire arrays over large areas on various polycrystalline ZnO seed layers, thus paving the way for their future integration into devices. We also demonstrate the possibility to form ZnO nanowires by chemical bath deposition on original semipolar ZnO single crystal substrates. These findings allowed a comprehensive understanding of the nucleation and growth mechanisms of ZnO nanowires on polycrystalline ZnO seed layers.In a device perspective, the ZnO nanowires are subsequently combined with p type semiconducting shells by liquid and vapor chemical deposition techniques to form original core-shell heterostructures. The formation of a cubic phase SnS absorbing shell is optimized by the successive ionic layer adsorption and reaction (SILAR) process on ZnO nanowire arrays coated with a thin protective TiO2 shell, which pave the way for their integration into extremely thin absorber solar cells. A self-powered UV photo-detector with fast response and state of the art performances is also achieved by the chemical vapor deposition of a CuCrO2 shell on ZnO nanowire arrays.
|
199 |
Síntese e caracterização de nanopartículas núcleo-casca de poliestireno e polimetacrilato de metila obtidas por polimerização em emulsão sem emulsificante e fotoiniciada. / Synthesis and characterization of core-shell nanoparticles of polystyrene and poly(methyl metacrylate) obtained by emulsifier-free emulsion polymerization and photopolymerization.Carranza Oropeza, María Verónica 19 September 2011 (has links)
O objetivo do trabalho foi sintetizar e caracterizar nanopartículas de poliestireno e polimetacrilato de metila com morfologia núcleo-casca obtidas através da polimerização em emulsão sem emulsificante em dois estágios e através da fotopolimerização. Nos experimentos avaliou-se a influência de diferentes condições operacionais baseadas em fatores cinéticos sobre os dois estágios da polimerização. As condições avaliadas para o primeiro estágio de preparação de núcleos foram: a temperatura do processo, a concentração de iniciador e de monômero, e o efeito de agentes modificadores de superfície (sal, co-monômero e reticulante). Para o segundo estágio de formação da casca as condições avaliadas foram: a concentração e o regime de alimentação de monômero. Os resultados experimentais mostraram que uma relação de co-monômero e reticulante é a melhor alternativa para preparar núcleos estáveis e de diâmetros pequenos. Assim, o revestimento uniforme dos núcleos é obtido no segundo estágio e com isso a morfologia núcleo-casca em equilíbrio é alcançada. Dois sistemas experimentais (reator convencional e reator fotoquímico) foram propostos e avaliados na sua eficiência para obter partículas com este tipo de morfologia no segundo estágio (formação do revestimento). As diversas técnicas de caracterização indicaram a formação de morfologia núcleo-casca na maioria dos casos estudados para os dois sistemas propostos. Por sua vez, as técnicas espectroscópicas (NIR e Raman) permitiram o monitoramento do processo em tempo real e a elaboração de modelos de calibração que correlacionaram o crescimento do tamanho da partícula núcleo. Da mesma forma, os fatores termodinâmicos foram estudados para predizer a morfologia final esperada nos sistemas. Os resultados, experimental e predito são comparados e discutidos em termos de aspectos chave envolvidos no controle da morfologia da partícula. / This work aimed at studying the synthesis and characterization of core-shell nanoparticles of polystyrene and polymethylmethacrylate obtained in a two-stage emulsifier-free emulsion polymerization and photopolymerization. The influence of different operational conditions based on kinetic factors was experimentally evaluated. In the first stage (seed preparation) the process temperature, initiator and monomer concentrations and the effect of surface-modifier agents (acids, salts, co-monomers and crosslinker) were investigated; similarly in the second stage, the concentration and feeding regime of monomer were evaluated with respect to the shell formation. Experimental results showed that both, crosslinker and co-monomer are the best alternative to achieve a stable seed with small diameter; hence, with this core, uniform coating is obtained in the second stage and core-shell morphology is reached. In order to evaluate the efficiency of the preparation of core-shell particles, two experimental systems (conventional and photochemical reactor) were studied. Different characterization techniques indicated that in most of the cases studied particles with the desired core-shell morphology were formed. The use of spectroscopic techniques NIR and Raman were tested for the real-time monitoring of the process using adequate calibration models developed to correlate the average size of the growing core particle with the spectra. In the same way, thermodynamic factors were used to predict the expected final morphology of the particles. Experimental and predicted results were compared and discussed in terms of the key aspects involved in the control of the particle morphology.
|
200 |
Morphologie des mélanges ternaires PLA/PBAT/PA / Morphology of PLA/PBAT/PA ternary blendsFu, Yang 18 December 2017 (has links)
Ce travail vise à obtenir une morphologie cœur-peau directement lors du mélangeage à l’état fondu de polymères ternaires PLA/PBAT/PA. Le but final est d'améliorer la ténacité de l'acide polylactique (PLA). La morphologie des mélanges de polymères multi-phases est contrôlée par la thermodynamique du système. La morphologie des mélanges ternaires peut être prédite à partir des valeurs relatives des trois coefficients d'étalement caractérisant le triplet de polymères. Les coefficients d'étalement sont calculés à partir des valeurs des tensions interfaciales entre les composants binaires. La détermination des tensions interfaciales entre PLA, poly (butylène adipate-co-téréphtalate) (PBAT) et un copolyamide (PA) prédit une morphologie dispersée complexe dans la matrice PLA où les sous-inclusions PA sont partiellement encapsulées dans la phase PBAT. Cette morphologie a été obtenue par mélange à l'état fondu des trois composants, comme observé par les observations en microscopie électronique à balayage. Dans une seconde étape, une compatibilisation sélective a été utilisée pour modifier l'emplacement des sous-inclusions de PA. A cette fin, deux copolymères diblocs PBAT-b-PLA, PA-b-PBAT ont été synthétisés. La présence des copolymères diblocs nous permet de modifier la tension interfaciale des couples PLA/PBAT, PA/PBAT. Cette modification de l'équilibre de tension interfaciale modifie avec succès la morphologie, passant d’une semi-encapsulation à une encapsulation complète des sous-inclusions de PA dans les gouttes de PBAT. La performance mécanique de ce mélange ternaire a été évaluée. / This work aims at achieving direct core-shell morphologies in ternary PLA/PBAT/PA polymer blends by melt mixing. The final goal is to improve the toughness of polylactic acid (PLA). The morphology of multi-phase polymer blends is controlled by the thermodynamics of the system. The morphology of ternary blends can be predicted from the relative values of the three spreading coefficients characterizing the triplet of polymers. Spreading coefficients are calculated from the values of interfacial tensions between binary components. The determination of interfacial tensions between a PLA, a poly(butylene adipate-co-terephthalate) (PBAT) and a copolyamide (PA) predicts a complex dispersed morphology in the PLA matrix where PA subinclusions are partly encapsulated in the PBAT phase. This morphology was obtained by melt mixing the three components, as observed by scanning electron microscopy. In a second step, selective compatibilization was used to modify the PA sub-inclusion location. To this end, PBAT-b-PLA and PA-b-PBAT di-block copolymers were synthesized. The presence of the di-block copolymers enabled to modify the interfacial tension in PLA/PBAT and PA/PBAT. The modification of the interfacial tension balance was shown to successfully change the morphology from semi-encapsulation to full encapsulation of PA sub-inclusions in the PBAT drops. The mechanical performance of this ternary blend was evaluated.
|
Page generated in 0.0377 seconds