Spelling suggestions: "subject:"correção partlett"" "subject:"correção bartlett""
11 |
Aperfeiçoamento de métodos estatísticos em modelos de regressão da família exponencial / Further statistical methods in regression models of the exponential familyAlexsandro Bezerra Cavalcanti 03 August 2009 (has links)
Neste trabalho, desenvolvemos três tópicos relacionados a modelos de regressão da família exponencial. No primeiro tópico, obtivemos a matriz de covariância assintótica de ordem $n^$, onde $n$ é o tamanho da amostra, dos estimadores de máxima verossimilhança corrigidos pelo viés de ordem $n^$ em modelos lineares generalizados, considerando o parâmetro de precisão conhecido. No segundo tópico calculamos o coeficiente de assimetria assintótico de ordem n^{-1/2} para a distribuição dos estimadores de máxima verossimilhança dos parâmetros que modelam a média e dos parâmetros de precisão e dispersão em modelos não-lineares da família exponencial, considerando o parâmetro de dispersão desconhecido, porém o mesmo para todas as observações. Finalmente, obtivemos fatores de correção tipo-Bartlett para o teste escore em modelos não-lineares da família exponencial, considerando covariáveis para modelar o parâmetro de dispersão. Avaliamos os resultados obtidos nos três tópicos desenvolvidos por meio de estudos de simulação de Monte Carlo / In this work, we develop three topics related to the exponential family nonlinear regression. First, we obtain the asymptotic covariance matrix of order $n^$, where $n$ is the sample size, for the maximum likelihood estimators corrected by the bias of order $n^$ in generalized linear models, considering the precision parameter known. Second, we calculate an asymptotic formula of order $n^{-1/2}$ for the skewness of the distribution of the maximum likelihood estimators of the mean parameters and of the precision and dispersion parameters in exponential family nonlinear models considering that the dispersion parameter is the same although unknown for all observations. Finally, we obtain Bartlett-type correction factors for the score test in exponential family nonlinear models assuming that the precision parameter is modelled by covariates. Monte Carlo simulation studies are developed to evaluate the results obtained in the three topics.
|
12 |
Estatística gradiente e refinamento de métodos assintóticos no modelo de regressão Birnbaum-Saunders / Gradient statistic and asymptotic inference in the Birnbaum-Saunders regression modelLemonte, Artur Jose 05 February 2010 (has links)
Rieck & Nedelman (1991) propuseram um modelo de regressão log-linear tendo como base a distribuição Birnbaum-Saunders (Birnbaum & Saunders, 1969a). O modelo proposto pelos autores vem sendo bastante explorado e tem se mostrado uma ótima alternativa a outros modelos propostos na literatura, como por exemplo, os modelos de regressão Weibull, gama e lognormal. No entanto, até o presente momento, não existe nenhum estudo tratando de refinamentos para as estatísticas da razão de verossimilhanças e escore nesta classe de modelos de regressão. Assim, um dos objetivos desta tese é obter um fator de correção de Bartlett para a estatística da razão de verossimilhanças e um fator de correção tipo-Bartlett para a estatística escore nesse modelo. Estes ajustes melhoram a aproximação da distribuição nula destas estatísticas pela distribuição qui-quadrado de referência. Adicionalmente, objetiva-se obter ajustes para a estatística da razão de verossimilhanças sinalizada. Tais ajustes melhoram a aproximação desta estatística pela distribuição normal padrão. Recentemente, uma nova estatística de teste foi proposta por Terrell (2002), a qual o autor denomina estatística gradiente. Esta estatística foi derivada a partir da estatística escore e da estatística de Wald modificada (Hayakawa & Puri, 1985). A combinação daquelas duas estatísticas resulta em uma estatística muito simples de ser calculada, não envolvendo, por exemplo, nenhum cálculo matricial como produto e inversa de matrizes. Esta estatística foi recentemente citada por Rao (2005): \"The suggestion by Terrell is attractive as it is simple to compute. It would be of interest to investigate the performance of the [gradient] statistic.\" Caminhando na direção da sugestão de Rao, outro objetivo da tese é obter uma expansão assintótica para a distribuição da estatística gradiente sob uma sequência de alternativas de Pitman convergindo para a hipótese nula a uma taxa de convergência de n^{-1/2} utilizando a metodologia desenvolvida por Peers (1971) e Hayakawa (1975). Em particular, mostramos que, até ordem n^{-1/2}, a estatística gradiente segue distribuição qui-quadrado central sob a hipótese nula e distribuição qui-quadrado não central sob a hipótese alternativa. Também temos como objetivo comparar o poder local deste teste com o poder local dos testes da razão de verossimilhanças, de Wald e escore. Finalmente, aplicaremos a expansão assintótica derivada na tese em algumas classes particulares de modelos. / The Birnbaum-Saunders regression model is commonly used in reliability studies.We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio and score tests tend to be liberal when the sample size is small. We derive Bartlett and Bartlett-type correction factors which reduce the size distortion of the tests. Additionally, we also consider modified signed log-likelihood ratio statistics in this class of models. Finally, the asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n^{-1/2}, n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property.
|
13 |
Inferência e diagnóstico em modelos não lineares Log-Gama generalizadosSILVA, Priscila Gonçalves da 04 November 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-25T14:46:06Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
TESE VERSÃO FINAL (CD).pdf: 688894 bytes, checksum: fc5c0291423dc50d4989c1c2d8d4af65 (MD5) / Made available in DSpace on 2017-04-25T14:46:06Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
TESE VERSÃO FINAL (CD).pdf: 688894 bytes, checksum: fc5c0291423dc50d4989c1c2d8d4af65 (MD5)
Previous issue date: 2016-11-04 / Young e Bakir (1987) propôs a classe de Modelos Lineares Log-Gama Generalizados (MLLGG) para analisar dados de sobrevivência. No nosso trabalho, estendemos a classe de modelos propostapor Young e Bakir (1987) permitindo uma estrutura não linear para os parâmetros de regressão. A nova classe de modelos é denominada como Modelos Não Lineares Log-Gama Generalizados (MNLLGG). Com o objetivo de obter a correção de viés de segunda ordem dos estimadores de máxima verossimilhança (EMV) na classe dos MNLLGG, desenvolvemos uma expressão matricial fechada para o estimador de viés de Cox e Snell (1968). Analisamos, via simulação de Monte Carlo, os desempenhos dos EMV e suas versões corrigidas via Cox e Snell (1968) e através da metodologia bootstrap (Efron, 1979). Propomos também resíduos e técnicas de diagnóstico para os MNLLGG, tais como: alavancagem generalizada, influência local e influência global. Obtivemos, em forma matricial, uma expressão para o fator de correção de Bartlett à estatística da razão de verossimilhanças nesta classe de modelos e desenvolvemos estudos de simulação para avaliar e comparar numericamente o desempenho dos testes da razão de verossimilhanças e suas versões corrigidas em relação ao tamanho e poder em amostras finitas. Além disso, derivamos expressões matriciais para os fatores de correção tipo-Bartlett às estatísticas escore e gradiente. Estudos de simulação foram feitos para avaliar o desempenho dos testes escore, gradiente e suas versões corrigidas no que tange ao tamanho e poder em amostras finitas. / Young e Bakir (1987) proposed the class of generalized log-gamma linear regression models (GLGLM) to analyze survival data. In our work, we extended the class of models proposed by Young e Bakir (1987) considering a nonlinear structure for the regression parameters. The new class of models is called generalized log-gamma nonlinear regression models (GLGNLM). We also propose matrix formula for the second-order bias of the maximum likelihood estimate of the regression parameter vector in the GLGNLM class. We use the results by Cox and Snell (1968) and bootstrap technique [Efron (1979)] to obtain the bias-corrected maximum likelihood estimate. Residuals and diagnostic techniques were proposed for the GLGNLM, such as generalized leverage, local and global influence. An general matrix notation was obtained for the Bartlett correction factor to the likelihood ratio statistic in this class of models. Simulation studies were developed to evaluate and compare numerically the performance of likelihood ratio tests and their corrected versions regarding size and power in finite samples. Furthermore, general matrix expressions were obtained for the Bartlett-type correction factor for the score and gradient statistics. Simulation studies were conducted to evaluate the performance of the score and gradient tests with their corrected versions regarding to the size and power in finite samples.
|
14 |
Estatística gradiente e refinamento de métodos assintóticos no modelo de regressão Birnbaum-Saunders / Gradient statistic and asymptotic inference in the Birnbaum-Saunders regression modelArtur Jose Lemonte 05 February 2010 (has links)
Rieck & Nedelman (1991) propuseram um modelo de regressão log-linear tendo como base a distribuição Birnbaum-Saunders (Birnbaum & Saunders, 1969a). O modelo proposto pelos autores vem sendo bastante explorado e tem se mostrado uma ótima alternativa a outros modelos propostos na literatura, como por exemplo, os modelos de regressão Weibull, gama e lognormal. No entanto, até o presente momento, não existe nenhum estudo tratando de refinamentos para as estatísticas da razão de verossimilhanças e escore nesta classe de modelos de regressão. Assim, um dos objetivos desta tese é obter um fator de correção de Bartlett para a estatística da razão de verossimilhanças e um fator de correção tipo-Bartlett para a estatística escore nesse modelo. Estes ajustes melhoram a aproximação da distribuição nula destas estatísticas pela distribuição qui-quadrado de referência. Adicionalmente, objetiva-se obter ajustes para a estatística da razão de verossimilhanças sinalizada. Tais ajustes melhoram a aproximação desta estatística pela distribuição normal padrão. Recentemente, uma nova estatística de teste foi proposta por Terrell (2002), a qual o autor denomina estatística gradiente. Esta estatística foi derivada a partir da estatística escore e da estatística de Wald modificada (Hayakawa & Puri, 1985). A combinação daquelas duas estatísticas resulta em uma estatística muito simples de ser calculada, não envolvendo, por exemplo, nenhum cálculo matricial como produto e inversa de matrizes. Esta estatística foi recentemente citada por Rao (2005): \"The suggestion by Terrell is attractive as it is simple to compute. It would be of interest to investigate the performance of the [gradient] statistic.\" Caminhando na direção da sugestão de Rao, outro objetivo da tese é obter uma expansão assintótica para a distribuição da estatística gradiente sob uma sequência de alternativas de Pitman convergindo para a hipótese nula a uma taxa de convergência de n^{-1/2} utilizando a metodologia desenvolvida por Peers (1971) e Hayakawa (1975). Em particular, mostramos que, até ordem n^{-1/2}, a estatística gradiente segue distribuição qui-quadrado central sob a hipótese nula e distribuição qui-quadrado não central sob a hipótese alternativa. Também temos como objetivo comparar o poder local deste teste com o poder local dos testes da razão de verossimilhanças, de Wald e escore. Finalmente, aplicaremos a expansão assintótica derivada na tese em algumas classes particulares de modelos. / The Birnbaum-Saunders regression model is commonly used in reliability studies.We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio and score tests tend to be liberal when the sample size is small. We derive Bartlett and Bartlett-type correction factors which reduce the size distortion of the tests. Additionally, we also consider modified signed log-likelihood ratio statistics in this class of models. Finally, the asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n^{-1/2}, n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property.
|
Page generated in 0.0645 seconds