• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding the early stage of cluster formation

Ke Shi (6623981) 11 June 2019 (has links)
Understanding the formation and evolution of galaxies is a crucially important task in modern astronomy. It is well known that galaxy formation is strongly affected by the environments they reside in. Galaxy clusters, as the densest large-scale structures in the Universe, thus serve as ideal laboratories to study how galaxy formation proceeds in dense environments. Clusters already began to form at $z>2$, therefore to directly witness the early stage of galaxy formation in dense environments, it is necessary to identify progenitors of clusters (`protoclusters') and study their galaxy constituents within. In this thesis, I present two observational studies on high-redshift protoclusters at $z>3$. Utilizing multiwavelength data and different galaxy selection techniques, significant galaxy overdensities are found in the two protoclusters, which are predicted to evolve into Coma-like clusters by present day. Various types of galaxies are identified in the protocluster, such as normal star-forming galaxies, massive quiescent galaxies and post-starburst galaxies. Together with extreme and rare sources such as giant Lyman-alpha nebulae and brighest cluster galaxy, they paint a picture of how different galaxy populations trace the underlying dark matter halos. Finally, the environmental impact on galaxy properties appears to be a subtle one for these protoclusters, which might depend on the galaxy population one chooses to study.
2

Cosmic Skepticism and the Beginning of Physical Reality

Daniel J Linford (12883550) 16 June 2022 (has links)
<p>This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause for its beginning to exist, (P2) physical reality began to exist, and, therefore, (C) physical reality has a cause for its beginning to exist. While the KCA has traditionally been used to argue for God's existence, the KCA does not mention God, has been rejected by historically significant Christian theologians such as Thomas Aquinas, and raises perennial philosophical questions -- about the nature and history of physical reality, the nature of time, the nature of causation, and so on -- that should be of interest to all philosophers and, perhaps, all humans. While I am not a religious person, I am interested in the questions raised by the KCA. In this dissertation, I articulate three necessary conditions that physical reality would need to fulfill in order to have had a beginning and argue that, given the current state of philosophical and scientific inquiry, we cannot determine whether physical reality began to exist.</p>
3

Entanglement Entropy in Cosmology and Emergent Gravity

Akhil Jaisingh Sheoran (15348844) 25 April 2023 (has links)
<p>Entanglement entropy (EE) is a quantum information theoretic measure that quantifies the correlations between a region and its surroundings. We study this quantity in the following two setups : </p> <ul> <li>We look at the dynamics of a free minimally coupled, massless scalar field in a deSitter expansion, where the expansion stops after some time (i.e. we quench the expansion) and transitions to flat spacetime. We study the evolution of entanglement entropy (EE) and the Rényi entropy of a spatial region during the expansion and, more interestingly, after the expansion stops, calculating its time evolution numerically. The EE increases during the expansion but the growth is much more rapid after the expansion ends, finally saturating at late times, with saturation values obeying a volume law. The final state of the subregion is a partially thermalized state, reminiscent of a Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.</li> <li>We study the EE in a theory that is holographically dual to a BTZ black hole geometry in the presence of a scalar field, using the Ryu-Takayangi (RT) formula. Gaberdiel and Gopakumar had conjectured that the theory of N free fermions in 1+1 dimensions, for large N, is dual to a higher spin gravity theory with two scalar fields in 2+1 dimensions. So, we choose our boundary theory to be the theory of N free Dirac fermions with a uniformly winding mass, m e<sup>iqx</sup>, in two spacetime dimensions (which describes for instance a superconducting current in an N-channel wire). However, to O(m<sup>2</sup>), thermodynamic quantities can be computed using Einstein gravity. We aim to check if the same holds true for entanglement entropy (EE). Doing calculations on both sides of the duality, we find that general relativity does indeed correctly account for EE of single intervals to O(m<sup>2</sup>).</li> </ul>

Page generated in 0.1207 seconds