Spelling suggestions: "subject:"bombexplosion"" "subject:"bombenexplosion""
11 |
Dynamics of heterogeneous clusters under intense laser fieldsDi Cintio, Pierfrancesco 07 August 2014 (has links)
By means of N-body simulations we study the ion and electron dynamics in molecular first-row hydride clusters when exposed to intense and short X-ray pulses. We find that, for a particular range of X-ray intensities, fast protons are ejected from the system on a considerably shorter time scale than that of the screened core. As a consequence, the structure of heavy atoms is kept intact", which may be relevant in the context of X-ray based molecular imaging. Moreover the final charge states of the heavy ions are considerably lower than those of the ions in pristine atomic clusters exposed to the same laser pulses, which is in agreement with recent measurement of methane cluster at the LCLS in Stanford.
|
12 |
Probing femtosecond and attosecond electronic and chiral dynamics : high-order harmonic generation, XUV free induction decay, photoelectron spectroscopy and Coulomb explosion / Mesure de dynamiques électroniques et chirales à l'échelle femtoseconde et attoseconde : génération d'harmoniques d'ordre élevé, décroissance libre de l'induction XUV, spectroscopie de photoélectrons et explosion CoulombienneBeaulieu, Samuel 23 May 2018 (has links)
Ce manuscrit de thèse s'articule autour de l'étude de l'interaction entre des impulsions lumineuses ultra brèves et des atomes ainsi que des molécules polyatomiques et chirales en phase gazeuse. En utilisant des techniques développées en physique attoseconde ainsi qu'en femtochimie, notre objectif général est de parvenir à une meilleure compréhension des dynamiques ultrarapides photoinduites dans la matière. Pour ce faire, nous avons développé des sources de lumière à ultra brèves dans le proche infrarouge et l’infrarouge moyen, qui ont été utilisées pour construire une source de rayons X dans la fenêtre de l’eau, basée surla génération d'harmoniques d’ordre élevé (GHOE), ainsi que pour l’étude de nouveaux canaux de GHOE impliquant des états hautement excités (Rydberg). Cette dernière étude a démontré une émission harmonique via l'ionisation depuis des états de Rydberg et la recombinaison radiative sur l'état fondamental, attirant ainsi notre intérêt pour le rôle des états de Rydberg en physique des champs forts. Cela nous a conduit à étudier la décroissance libre de l’induction XUV de paquets d'ondes électroniques comme une nouvelle technique de spectroscopie 2D. De plus, nous avons découvert que l'interaction entre un laser intense et un atome préparé dans une superposition cohérente d'états électroniques peut conduire à la génération de lignes hyper-Raman concomitantes avec la GHOE standard. Ce mécanisme avait été prédit lors des premiers calculs théoriques de GHOE, mais n'avait jamais été démontré expérimentalement. Par la suite, nous nous sommes intéressé à l’étude de systèmes moléculaires, dans lesquelles une excitation électronique induite par la lumière peut déclencher des dynamiques nucléaires. Nous avons étudié la photo isomérisation non-adiabatique de l’acétylène cationique en vinylidène cationique ainsi que le contrôle cohérent de la localisation électronique lors de la photodissociation de H2+. La simplicité de ces systèmes moléculaires a permis la comparaison des résultats expérimentaux avec des calculs théoriques de pointe,révélant l'importance du couplage entre les degrés de liberté nucléaires et électroniques lors de dynamiques moléculaires photoinduites.Un autre pilier majeur de cette thèse est l'étude de l'ionisation de molécules chirales avec des impulsions chirales. On sait depuis les années 70 que l'ionisation d'un ensemble de molécules chirales aléatoirement orientées, en utilisant une impulsion polarisée circulairement, conduit à une forte asymétrie avant-arrière dans le nombre de photoélectrons émis, selon l'axe de propagation de la lumière (DichroismeCirculaire de Photoélectron, DCPE). Avant cette thèse, le DCPE a été largement étudié à l’aide du rayonnement synchrotron (ionisation à un photon) et a récemment été démontré avec des lasers femtoseconde, via des schémas d'ionisation multiphotonique. Dans cette thèse, nous avons montré que le DCPE est un effet universel, c'est-à-dire qu'il émerge dans tous les régimes d'ionisation: l'ionisation àun photon, l'ionisation à multiphonique, l'ionisation au-dessus du seuil ainsi que l’ionisation par effet tunnel. Ensuite, nous avons démontré que la combinaison d’approches standard de femtochimie et du DCPE peuvent être utilisées pour suivre des dynamique de molécules chirales photoexcitées. En utilisant des approches expérimentales similaires, avec des séquences d'impulsions ayant des états de polarisation contre-intuitifs, nous avons démontré un nouvel effet chiroptique, appelé Dichroïsme Circulaire de Photoexcitation (DCPX), qui est décrit par un courant électronique directionnel et chirosensible, lorsque plusieurs niveaux sont peuplés de manière cohérente avec de la lumière chirale. Enfin, nous avons introduit une perspective temporelle à la photoionisation chirale en mesurant l'asymétrie avant arrièredes retards de photoionisation dans les molécules chirales photoionisées par des impulsions lumineuses chirales. / This thesis manuscript is articulated around the investigation of the interaction between ultrashort light pulses and gas-phase atoms, polyatomic and chiral molecules. Using the toolboxes developed in attosecond and strong-field physics as well as in femtochemistry, our general goal is to reach a better understanding of subtle effects underlying ultrafast light-induced dynamics in matter.To do so, we developed cutting-edge near-infrared and mid-infrared few-cycle light sources, which were used to build a water-window soft-X-ray source based on high order harmonic generation (HHG), as well as to study new HHG channels involving highly-excited (Rydberg) states. The latter study revealed a delayed HHG emission from the ionization of Rydberg states and radiative recombination onto the electronicground state, triggering our interest in the role of Rydberg states in strong-field physics. This led us to investigate the laser-induced XUV Free Induced Decay from electronic wave packets as a new background-free 2D spectroscopic technique.More over, we have found out that strong-field interaction with a well prepared coherent superposition of electronic states led to the generation of hyper-Ramanlines concomitant with standard high-order harmonics. These spectral features were predicted in the early-days theoretical calculations of HHG but had never been reported experimentally.After these experiments in rare gas atoms, we moved to molecular targets, in whichlight-induced electronic excitation can trigger nuclear dynamics. Using simple benchmark molecules, we have studied dynamics involving the participation of both nuclear and electronic degrees of freedom: first, we studied the ultrafast non adiabatic photoisomerization of the acetylene cation into vinylidene cation, andsecond, we investigated the coherent control of electron localization during molecular photodissociation of H2+. The simplicity of these molecular targets enabled the comparison of the experimental results with state-of-the-art theoretical calculations,revealing the importance of the coupling between nuclear and electronic degrees of freedom in photoinduced molecular dynamics.The other major pillar of this thesis is the study of ionization of chiral molecules usingchiral light pulses. It has been known since the 70s that the ionization from an ensemble of randomly oriented chiral molecules, using circularly polarized light pulse,leads to a strong forward-backward asymmetry in the number of emitted photoelectrons, along the light propagation axis (Photoelectron Circular Dichroism,PECD). Prior to this thesis, PECD was widely studied at synchrotron facilities (single photonionization) and had recently been demonstrated using table-top lasers in resonant-enhanced multiphoton ionization schemes. In this thesis, we have shownthat PECD is a universal effect, i.e. that it emerges in all ionization regimes, from single photon ionization, to few-photon ionization, to above-threshold ionization, up to the tunneling ionization regime. This bridges the gap between chiral photoionizationand strong-field physics. Next, we have shown how the combination of standard femtochemistry approaches and PECD can be used to follow the dynamics of photoexcited chiral molecules using time-resolved PECD. Using similar experimental approaches, but by using pulse sequences with counter-intuitive polarization states,we have demonstrated a novel electric dipolar chiroptical effect, called Photoexcitation Circular Dichroism (PXCD), which emerges as a directional and chirosensitive electron current when multiple excited bound states of chiral molecules are coherently populated with chiral light. Last, we introduced a time-domain perspective on chiral photoionization by measuring the forward-backward asymmetry of photoionization delays in chiral molecules photoionized by chiral light pulses. Our work thus carried chiral-sensitive studies down to the femtosecond and attosecond ranges.
|
13 |
Laser based acceleration of charged particlesPopov, Konstantin 11 1900 (has links)
In this Thesis, two problems were studied: a direct vacuum acceleration of electrons by a tightly focused ultrashort relativistic laser pulse and ion acceleration in the process of spherical laser-heated plasma explosion.
The electromagnetic field of a tightly focused laser pulse was evaluated numerically by means of Stratton-Chu integrals. The properties of the focused field were analyzed in detail for a plane wave or a macroscopically large Gaussian beam incident onto the mirror. Free electrons moving in the tightly focused field were found to accelerate by two possible mechanisms: focal spot acceleration and capture-and-acceleration scenario. The two mechanisms were studied in detail. Comparison of the mirror-focused field with first- and fifth-order paraxial fields is performed. A 3D electromagnetic PIC code SCPIC was created for simulations of pulse interaction with targets having a finite number of particles interacting with each other by collective fields. Atto-second bunch formation was observed in the interaction with ultra-small or ultra-thin targets. Physical mechanism of bunch formation is explained.
The problem of electrostatic explosion of a nano-scale spherical plasma with initially hot electrons and cold ions was solved numerically. Expansion in a wide regime of electron temperature $0 < T leq infty$ was studied in detail for different initial density profiles of plasma. Favorable conditions for obtaining mono-energetic ions resulting from the explosion were specified in single and two ionic species cases. In case of a two-species explosion, the number of mono-energetic, $deltavarepsilon/varepsilon < 10\%$, ions can be as high as 70-80\% of the total light ions for a wide range of electron temperatures.
|
14 |
Laser based acceleration of charged particlesPopov, Konstantin Unknown Date
No description available.
|
15 |
Creating and Probing Extreme States of Materials : From Gases and Clusters to Biosamples and SolidsIwan, Bianca January 2012 (has links)
Free-electron lasers provide high intensity pulses with femtosecond duration and are ideal tools in the investigation of ultrafast processes in materials. Illumination of any material with such pulses creates extreme conditions that drive the sample far from equilibrium and rapidly convert it into high temperature plasma. The dynamics of this transition is not fully understood and the main goal of this thesis is to further our knowledge in this area. We exposed a variety of materials to X-ray pulses of intensities from 1013 to above 1017 W/cm2. We found that the temporal evolution of the resulting plasmas depends strongly on the wavelength and pulse intensity, as well as on material related parameters, such as size, density, and composition. In experiments on atomic and molecular clusters, we find that cluster size and sample composition influence the destruction pathway. In small clusters a rapid Coulomb explosion takes place while larger clusters undergo a hydrodynamic expansion. We have characterized this transition in methane clusters and discovered a strong isotope effect that promotes the acceleration of deuterium ions relative to hydrogen. Our results also show that ions escaping from exploding xenon clusters are accelerated to several keV energies. Virus particles represent a transition between hetero-nuclear clusters and complex biological materials. We injected single mimivirus particles into the pulse train of an X-ray laser, and recorded coherent diffraction images simultaneously with the fragmentation patterns of the individual particles. We used these results to test theoretical damage models. Correlation between the diffraction patterns and sample fragmentation shows how damage develops after the intense pulse has left the sample. Moving from sub-micron objects to bulk materials gave rise to new phenomena. Our experiments with high-intensity X-ray pulses on bulk, metallic samples show the development of a transient X-ray transparency. We also describe the saturation of photoabsorption during ablation of vanadium and niobium samples. Photon science with extremely strong X-ray pulses is in its infancy today and will require much more effort to gain more knowledge. The work described in this thesis represents some of the first results in this area.
|
16 |
Studies of photoinduced molecular dynamics using a fast imaging sensorSlater, Craig Stephen January 2013 (has links)
Few experimental techniques have found such a diverse range of applications as has ion imaging. The field of chemical dynamics is constantly advancing, and new applications of ion imaging are being realised with increasing frequency. This thesis is concerned with the application of a fast pixelated imaging sensor, the Pixel Imaging Mass Spectrometry (PImMS) camera, to ion imaging applications. The experimental possibilities of such a marriage are exceptionally broad in scope, and this thesis is concerned with the development of a selection of velocity-map imaging applications within the field of photoinduced molecular dynamics. The capabilities of the PImMS camera in three-dimensional and slice imaging applications are investigated, in which the product fragment Newton-sphere is temporally stretched along the time-of-flight axis, and time-resolved slices through the product fragment distribution are acquired. Through experimental results following the photodissociation of ethyl iodide (CH<sub>3</sub>CH<sub>2</sub>I) at around 230 nm, the PImMS camera is demonstrated to be capable of recording well-resolved time slices through the product fragment Newton-sphere in a single experiment, without the requirement to time-gate the acquisition. The various multi-hit capabilities of the device represent a unique and significant advantage over alternative technologies. The details of a new experiment that allows the simultaneous imaging of both photoelectrons and photoions on a single detector for each experimental acquisition cycle using pulsed ion extraction are presented. It is demonstrated that it is possible to maintain a high velocity resolution using this approach through the simultaneous imaging of the photoelectrons and photoions that result from the (3 + 2) resonantly enhanced multi-photon ionisation of Br atoms produced following the photodissociation of Br<sub>2</sub> at 446.41 nm. Pulsed ion extraction represents a substantial simplification in experimental design over conventional photoelectron-photoion coincidence (PEPICO) imaging spectrometers and is an important step towards performing coincidence experiments using a conventional ion imaging apparatus coupled with a fast imaging detector. The performance of the PImMS camera in this application is investigated, and a new method for the determination of the photofragment detection efficiencies based on a statistical fitting of the coincident photoelectron and photoion data is presented. The PImMS camera is applied to laser-induced Coulomb explosion imaging (CEI) of an axially chiral substituted biphenyl molecule. The multi-hit capabilities of the device allow the concurrent detection of individual 2D momentum images of all ionic fragments resulting from the Coulomb explosion of multiple molecules in each acquisition cycle. Correlations between the recoil directions of the fragment ions are determined through a covariance analysis. In combination with the ability to align the molecules in space prior to the Coulomb explosion event, the experimental results demonstrate that it is possible to extract extensive information pertaining to the parent molecular structure and fragmentation dynamics following strong field ionisation. Preliminary simulations of the Coulomb explosion dynamics suggest that such an approach may hold promise for determining elements of molecular structure on a femtosecond timescale, bringing the concept of the `molecular movie' closer to realisation. Finally, the PImMS camera is applied to the imaging of laser-induced torsional motion of axially chiral biphenyl molecules through femtosecond Coulomb explosion imaging. The target molecules are initially aligned in space using a nanosecond laser pulse, and torsional motion induced using a femtosecond 'kick' pulse. Instantaneous measurements of the dihedral angle of the molecules are inferred from the correlated F+ and Br+ ion trajectories following photoinitiated Coulomb explosion at various time delays after the initial kick pulse. The technique is extended to include a second kick pulse, in order to achieve either an increase in the amplitude of the oscillations or to damp the motion, representing a substantial degree of control of the system. Measurements out to long kick-probe delays (200 ps) reveal that the initially prepared torsional wave packet periodically dephases and rephases, in accordance with the predictions of recent theoretical work.
|
Page generated in 0.0426 seconds