• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and modeling of thermo-mechanical fatigue crack growth in a single crystal superalloy

Adair, Benjamin Scott 27 August 2014 (has links)
Turbine engine blades are subjected to extreme conditions characterized by significant and simultaneous excursions in both stress and temperature. These conditions promote thermo-mechanical fatigue (TMF) crack growth which can significantly reduce component design life beyond that which would be predicted from isothermal/constant load amplitude results. A thorough understanding of the thermo-mechanical fatigue crack behavior in single crystal superalloys is crucial to accurately evaluate component life to ensure reliable operations without blade fracture through the use of "retirement for cause" (RFC). This research was conducted on PWA1484, a single crystal superalloy used by Pratt & Whitney for turbine blades. Initially, an isothermal constant amplitude fatigue crack growth rate database was developed, filling a void that currently exists in published literature. Through additional experimental testing, fractography, and modeling, the effects of temperature interactions, load interactions, oxidation and secondary crystallographic orientation on the fatigue crack growth rate and the underlying mechanisms responsible were determined. As is typical in published literature, an R Ratio of 0.7 displays faster crack growth when compared to R = 0.1. The effect of temperature on crack growth rate becomes more pronounced as the crack driving force increases. In addition secondary orientation and R Ratio effects on crack growth rate were shown to increase with increasing temperature. Temperature interaction testing between 649°C and 982°C showed that for both R = 0.1 and 0.7, retardation is present at larger alternating cycle blocks and acceleration is present at smaller alternating cycle blocks. This transition from acceleration to retardation occurs between 10 and 20 alternating cycles for R = 0.1 and around 20 alternating cycles for R = 0.7. Load interaction testing showed that when the crack driving force is near KIC the overload size greatly influences whether acceleration or retardation will occur at 982°C. Semi-realistic spectrum testing demonstrated the extreme sensitivity that relative loading levels play on fatigue crack growth life while also calling into question the importance of dwell times. A crack trajectory modeling approach using blade primary and secondary orientations was used to determine whether crack propagation will occur on crystallographic planes or normal to the applied load. Crack plane determination using a scanning electron microscope enabled verification of the crack trajectory modeling approach. The isothermal constant amplitude fatigue crack growth results fills a much needed void in currently available data. While the temperature and load interaction fatigue crack growth results reveal the acceleration and retardation that is present in cracks growing in single crystal turbine blade materials under TMF conditions. This research also provides a deeper understanding of the failure and deformation mechanisms responsible for crack growth during thermo-mechanical fatigue. The crack path trajectory modeling will help enable "Retirement for Cause" to be used for critical turbine engine components, a drastic improvement over the standard "safe-life" calculations while also reducing the risk of catastrophic failure due to "chunk liberation" as a function of time. Leveraging off this work there exists the possibility of developing a "local approach" to define a crack growth forcing function in single crystal superalloys.
2

Modelling of surface initiated rolling contact fatigue crack growth using the asperity point load mechanism

Hannes, Dave January 2011 (has links)
<p>QC 20110523</p>
3

Growth of cracks at rolling contact fatigue

Hannes, Dave January 2008 (has links)
Rolling contact fatigue is a problem encountered with many machine elements.In the current report a numerical study has been performed in order to predictthe crack path and crack propagation cycles of a surface initiated rolling contactfatigue crack. The implementation of the contact problem is based on theasperity point load mechanism for rolling contact fatigue. The practical studiedproblem is gear contact. Different loading types and models are studied andcompared to an experimental spall profile. Good agreement has been observedconsidering short crack lengths with a distributed loading model using normalloads on the asperity and for the cylindrical contact and a tangential load on theasperity. Several different crack propagation criteria have been implemented inorder to verify the validity of the dominant mode I crack propagation assumption.Some general characteristics of rolling contact fatigue cracks have beenhighlighted. A quantitative parameter study of the implemented model hasbeen performed. / Utmattning med rullande kontakter är ett ofta förekommande problem för många maskinelement. I den aktuella rapporten utfördes en numerisk studieför att förutsäga sprickvägen hos utmattningssprickor som initierats i ytan vidrullande kontakter. Implementeringen av kontaktproblemet bygger på asperitpunktlastmekanismen för rullande kontakter. Studien av kontaktproblemetär tillämpad till kugghjul. Olika belastningstyper och modeller studeradesoch jämfördes med profilen hos en experimentell spall. Bra överensstämmelseobserverades för korta spricklängder när en modell med fördelad belastninganvänds för en belastningstyp där en normalbelastning agerar på asperiten ochvid cylindriska kontakten och en tangentialbelastning införs på asperiten. Olikakriterier för spricktillväxt implementerades för att verifiera giltigheten av antagandetatt mode I spricktillväxt är dominant. Några generella kännetecken avutmattningssprickor med rullande kontakter framhävdes. En kvantitativ parameterstudie för den implementerade modellen utfördes.
4

Factors Affecting the Structural Integrity of Wood-Based Composites: Elevated Temperature and Adhesive Bonding

Li, Yuqin 01 April 2021 (has links)
This study focuses on factors that affect the structural integrity of wood-based composites. Wood-based composites exposed to fire may decompose due to the elevated temperatures, resulting in a degradation in performance. Thermal modelling can only predict the structural integrity of construction materials in fire if it is given accurate inputs. Consequently, methods for the characterization of the thermal, physical, and mechanical behaviors of wood and wood-based composites are selected, designed, and benchmarked. The relevant thermal and physical responses characterized includes porosity, permeability and thermal diffusivity. Common construction materials (white pine board, medium density fiberboard and spruce 24) are characterized from room temperature to complete decomposition. The characterization techniques and processes are based on existing literature and relevant ASTM standards. To reduce the number of experiments required for future material characterization, estimates based upon the degree of decomposition and the measured values for the virgin and charred materials are used. For porosity and thermal diffusivity, these models allow values at intermediate temperatures to be estimated with measurements at room temperature and complete decomposition and thermogravimetric analysis (TGA). We find that permeability depends heavily on the microstructure of materials and should be measured independently at the conditions of interest. An additional important aspect of the performance of wood-based composites is the fracture behavior of wood/adhesive systems. Adhesive bonding enables many engineered wood products such as furniture and structural wood joints and the adhesive fracture toughness often determines the durability. The conventional characterization method for wood/adhesive fracture resistance relies on samples with machined grain angles designed to funnel cracks to the adhesive interface. This method of sample preparation is difficult and time-consuming for certain wood species. In this work, a practical and efficient method is developed to characterize adhesive fracture energy of adhesively bonded veneer systems. In the method, auxiliary aluminum adherends are bonded to the veneers in an effort to drive the crack to the wood/adhesive interface. The method is applied to rotary-peeled veneers and saw-cut veneers produced from three species of wood bonded with three commonly used adhesives. The new tests method yields a high interfacial failure rate and successfully identifies differences in the performance of the three adhesives. SPG (one species of the rotary-peeled veneers) demonstrates a rising R-curve behavior (an increase in the fracture toughness with crack length) when bonded on the loose side. This increase in fracture toughness is observed to be a result of adhesive-substrate interaction, which is a developing process zone behind the crack tip consisting of bridged wood ligaments. / Doctor of Philosophy / Construction materials exposed to elevated temperatures from fires may reach temperatures where the material decomposes from the original material to a char. Protected and unprotected structural timber products exposed to fires may exhibit this behavior resulting in a degradation of performance. Understanding the thermal and physical responses of these materials is crucial in evaluating the materials behavior in fire. Additionally, many wood-based products (such as furniture) rely on adhesive bonds. Consequently, their usefulness is determined by the performance of those bonds. In this work, methods are developed to measure key properties impacting the behavior of wood-based systems at elevated temperatures, such as that experienced in fires and when they are subjected to forces attempting to debond one wood material from another. These techniques are demonstrated on common building materials (white pine board, medium density fiberboard and spruce 24) and wood veneers from three different species bonded with three different adhesives. Mathematical models are developed to expand the use of the data beyond the specific conditions for which it is measured.
5

Near-threshold Fatigue of Adhesive Joints: Effect of Mode Ratio, Bond Strength and Bondline Thickness

Azari, Shahrokh 05 September 2012 (has links)
The main objective of the project was to establish a fracture-mechanics energy-based approach for the design of structural adhesive joints under cyclic loading. This required understanding how an adhesive system behaved near its fatigue threshold, and how the key factors affected this behavior in a fresh undegraded joint. The investigated factors were mode ratio (phase angle), substrate material, surface treatment and surface roughness (both affecting the bond strength), bondline thickness and load ratio. It was first required to understand how the adhesive system behaved under quasi-static loading by examining a fracture mechanics-based design approach for adhesive systems with different substrate materials and geometries. Experiments were initially performed to characterize the strength of aluminum and steel adhesive systems based on the fracture envelope, critical strain energy release rate as a function of the mode ratio. Ultimate failure loads of aluminum and steel adhesive joints, having different overlap end conditions and different geometries were then experimentally measured. These values were compared with the failure loads extracted from the fracture envelope. Considering the toughening behavior of the adhesive in the fracture mechanics analyses, a very good agreement (average of 6%) was achieved between the predictions and experiments for all types of overlap end conditions and geometries. Different fatigue threshold testing approaches, which are commonly used in the literature or suggested by the ASTM standard, were evaluated for the cracked and intact fillet joints. Based on the experimental and analytical studies, the most appropriate technique for fatigue testing and characterization of adhesive systems was suggested. Comparing the mixed-mode near-threshold behavior of different adhesive systems with the fracture behavior and fatigue mode-I and mixed-mode high crack growth rates showed the high sensitivity of the mixed-mode near-threshold fatigue to the subtle changes in the interfacial bond strength. In order to make a baseline for the design of adhesive joints under cyclic loading, similar to the previous fracture tests and following the energy-based approach, fatigue behavior was characterized as a function of the loading mode ratio for aluminum and steel adhesive joints. The effect of substrate material, surface treatment, bondline thickness, surface roughness and fatigue testing load ratio on the near-threshold fatigue behavior of adhesives joints was evaluated experimentally. The experimental observations were then explained using finite element modeling. To generalize the conclusions, the majority of experiments and studies covered a broad range of crack growth rates, as low as fatigue threshold and as high as 10-2 mm/cycle. Having understood the significant testing and design parameters, an adhesive system can be designed based on a safe cyclic load that produces an insignificant (for automotive industry) or reasonably low but known crack growth rate (for aerospace industry).
6

Fissuration de matériaux soudés en condition de fatigue multiaxiale / Crack growth for welded parts subjected to multiaxial fatigue loading

Abecassis, Manon 05 December 2017 (has links)
Cette étude vise à i) déterminer le trajet de fissuration et la vitesse de propagation de fissure de fatigue dans un joint soudé sollicité en mode mixte ii) de proposer une analyse des interactions fissuration par fatigue/microstructure pour deux classes d'alliages soudés et iii) de proposer des critères de propagation de fissure, basé sur l'analyse des facteurs d'intensité de contrainte (FIC) pour les trois modes de fissuration.Les essais ont été réalisés pour un acier ferritique inoxydable, K41X soudé par gaz inerte, sur des éprouvettes à entaille centrale sous sollicitation uniaxiale pour différentes orientations d'entaille. Pour un assemblage bi-matériaux d'alliages de titane, obtenu par soudure laser de Ti17 et de Ti6242, les essais ont été effectués en condition biaxiale coplanaire sur une éprouvette en croix à entaille centrale à différents taux de cisaillement macroscopique.Pour l'acier, la fissure se propage en mode mixte trans- et intergranulaire dans le métal de base, et en mode transgranulaire uniquement dans la zone fondue (ZF). Néanmoins, c'est seulement en présence de cisaillement macroscopique induit par la géométrie d'entaille que la soudure a conduit à une accélération de la vitesse de fissure par rapport au métal de base. Pour Ti17 le chemin de propagation de fissure et la vitesse de propagation sont très réguliers alors qu'ils sont extrêmement oscillants pour Ti6242, car corrélés aux aiguilles α. La vitesse de fissuration est plus faible dans Ti6242 que dans Ti17 pour une sollicitation d'équibitraction, alors qu'elle est plus élevée dans Ti6242 que dans Ti17 pour un cisaillement macroscopique. Pour les éprouvettes soudées Ti17-Ti6242, le chemin de propagation est relativement régulier dans la ZF mais peut être piloté par l'interface zone affectée thermiquement (ZAT)/ZF. La vitesse est plus élevée dans la ZF que pour les deux métaux de base, alors qu'elle n'est que peu modifiée dans les ZAT.La régularité de la propagation de fissure dans Ti17 a permis d'utiliser ce cas comme un cas de référence dans le cadre de la mécanique linéaire de la rupture et ainsi proposer un critère de ∆Keq fonction des modes de sollicitations I, II et III. Ces résultats ont été obtenus en modélisant le chemin de fissure en surface et le déversement de fissure. L'analyse comparative des propriétés des différents matériaux testés a été menée dans ce cadre. Une analyse de sensibilité à la précision de la modélisation tridimensionnelle de la géométrie de fissure met en évidence le rôle prépondérant de celle-ci sur l'estimation des FIC en mode III et par conséquent sur la valeur de ∆Keq. Cette analyse permet d'expliquer les oscillations de vitesse constatées pour l'alliage Ti6242. / This study is devoted to i) the experimental characterization of fatigue crack path and fatigue crack growth rate (FCGR) for welded materials under mixed mode of loading ii) the analysis of fatigue crack to microstructure interactions for two types of welded materials and iii) the identification of a relevant FCGR criterion function of the mode mixity.The experimental characterization was achieved for a ferritic stainless steel, welded by metal inert gas, using CCT specimens for different orientations of the notch. Biaxial testing was achieved using central crack cross-shaped specimen, varying the shear to opening loading ratio, for a dissimilar welded joint obtained by laser welding of Ti17 and Ti6242 Ti base alloys.For the ferritic stainless steel, the crack is both trans- and intergranular for the base metal, whereas it becomes mainly transgranular for the welded specimen. Nevertheless, very slight modification of the FCGR, comparing base metal and welded material, is observed. The welding was seen to be detrimental only in the case of macroscopic shear loading implied by the geometry of the notch. For Ti17, crack path is very smooth and FCGR evolves regularly as a function of the stress intensity factor (SIF). Instead of what, for Ti6242 alloy, both the crack path and the FCGR present large amplitudes of oscillation, due to a strong interaction with alpha needles. The FCGR is lower in Ti6242 than in Ti17 for equibiaxial fatigue, whereas the FCGR is higher in Ti6242 than in Ti17 for macroscopic shear fatigue loading. For welded Ti17-Ti6242 specimens, FCGR is higher than observed in base metal for crack within the fusion zone (FZ), and tends to the FCGR of the associated base metal to each heat-affected zone (HAZ-Ti17 and HAZ-Ti6242).The case of Ti17 was seen to be relevant to determine an equivalent SIF function of mode mixity within the scope of LEFM. An original criterion has been established taking into consideration mode I, II and III. The numerical model describes explicitly both surface crack path and flat to slant orientation of the crack. This criterion has been successfully applied to both Ti and Fe base alloys, for base metal as well as for welded materials in order to determine the impact of welding on FCGR. At last but not least, the sensitivity of SIF values to the accuracy of the 3D modelling of the crack surface has been tested. Thus the local roughness of the crack path is seen to drastically impact the out-of-plane shear mode, which is in turn fully consistent with acceleration/deceleration of the crack observed for Ti6242 alloy.
7

長繊維強化プラスチックスにおける巨視的モードⅠ負荷を受ける層間き裂の進展経路

來海, 博央, KIMACHI, Hirohisa, 田中, 拓, TANAKA, Hiroshi, 田中, 啓介, TANAKA, Keisuke, 吉田, 康一, YOSHIDA, Koichi 06 1900 (has links)
No description available.
8

Crack Growth Rate and Crack Path in Adhesively Bonded Joints: Comparison of Creep, Fatigue and Fracture

Jhin, Minseok 20 November 2012 (has links)
The relationship between crack path and test method was examined by comparing the performance of adhesive-adherend combinations (six) in quasi-static fracture, mixed-mode fatigue, and creep crack growth. Crack paths in creep and quasi-static fracture were similar due to similar crack-tip plastic zone sizes in the epoxy adhesive even though the crack growth rates in creep were much smaller. Under condensed moisture and mixed-mode, creep and threshold fatigue tests produced interfacial failure. Under room-temperature dry environment, near threshold mixed-mode fatigue was interfacial, but was not in creep or quasi-static fracture. Smaller plastic zone size and crack path proximity to the interface that followed increased the sensitivity of near threshold, mixed-mode fatigue to surface properties. Therefore, the interfacial or cohesive failure of an adhesive system, which may judge the quality of the bond, can be a function of the test being conducted and may not be an absolute indicator of joint quality.
9

Crack Growth Rate and Crack Path in Adhesively Bonded Joints: Comparison of Creep, Fatigue and Fracture

Jhin, Minseok 20 November 2012 (has links)
The relationship between crack path and test method was examined by comparing the performance of adhesive-adherend combinations (six) in quasi-static fracture, mixed-mode fatigue, and creep crack growth. Crack paths in creep and quasi-static fracture were similar due to similar crack-tip plastic zone sizes in the epoxy adhesive even though the crack growth rates in creep were much smaller. Under condensed moisture and mixed-mode, creep and threshold fatigue tests produced interfacial failure. Under room-temperature dry environment, near threshold mixed-mode fatigue was interfacial, but was not in creep or quasi-static fracture. Smaller plastic zone size and crack path proximity to the interface that followed increased the sensitivity of near threshold, mixed-mode fatigue to surface properties. Therefore, the interfacial or cohesive failure of an adhesive system, which may judge the quality of the bond, can be a function of the test being conducted and may not be an absolute indicator of joint quality.
10

Near-threshold Fatigue of Adhesive Joints: Effect of Mode Ratio, Bond Strength and Bondline Thickness

Azari, Shahrokh 05 September 2012 (has links)
The main objective of the project was to establish a fracture-mechanics energy-based approach for the design of structural adhesive joints under cyclic loading. This required understanding how an adhesive system behaved near its fatigue threshold, and how the key factors affected this behavior in a fresh undegraded joint. The investigated factors were mode ratio (phase angle), substrate material, surface treatment and surface roughness (both affecting the bond strength), bondline thickness and load ratio. It was first required to understand how the adhesive system behaved under quasi-static loading by examining a fracture mechanics-based design approach for adhesive systems with different substrate materials and geometries. Experiments were initially performed to characterize the strength of aluminum and steel adhesive systems based on the fracture envelope, critical strain energy release rate as a function of the mode ratio. Ultimate failure loads of aluminum and steel adhesive joints, having different overlap end conditions and different geometries were then experimentally measured. These values were compared with the failure loads extracted from the fracture envelope. Considering the toughening behavior of the adhesive in the fracture mechanics analyses, a very good agreement (average of 6%) was achieved between the predictions and experiments for all types of overlap end conditions and geometries. Different fatigue threshold testing approaches, which are commonly used in the literature or suggested by the ASTM standard, were evaluated for the cracked and intact fillet joints. Based on the experimental and analytical studies, the most appropriate technique for fatigue testing and characterization of adhesive systems was suggested. Comparing the mixed-mode near-threshold behavior of different adhesive systems with the fracture behavior and fatigue mode-I and mixed-mode high crack growth rates showed the high sensitivity of the mixed-mode near-threshold fatigue to the subtle changes in the interfacial bond strength. In order to make a baseline for the design of adhesive joints under cyclic loading, similar to the previous fracture tests and following the energy-based approach, fatigue behavior was characterized as a function of the loading mode ratio for aluminum and steel adhesive joints. The effect of substrate material, surface treatment, bondline thickness, surface roughness and fatigue testing load ratio on the near-threshold fatigue behavior of adhesives joints was evaluated experimentally. The experimental observations were then explained using finite element modeling. To generalize the conclusions, the majority of experiments and studies covered a broad range of crack growth rates, as low as fatigue threshold and as high as 10-2 mm/cycle. Having understood the significant testing and design parameters, an adhesive system can be designed based on a safe cyclic load that produces an insignificant (for automotive industry) or reasonably low but known crack growth rate (for aerospace industry).

Page generated in 0.4369 seconds