Spelling suggestions: "subject:"frank¿nicolson method"" "subject:"frank¿nicholson method""
1 |
Numerical Analysis of Transient Teflon Ablation with a Domain Decomposition Finite Volume Implicit Method on Unstructured GridsWang, Mianzhi 25 April 2012 (has links)
This work investigates numerically the process of Teflon ablation using a finite-volume discretization, implicit time integration and a domain decomposition method in three-dimensions. The interest in Teflon stems from its use in Pulsed Plasma Thrusters and in thermal protection systems for reentry vehicles. The ablation of Teflon is a complex process that involves phase transition, a receding external boundary where the heat flux is applied, an interface between a crystalline and amorphous (gel) phase and a depolymerization reaction which happens on and beneath the ablating surface. The mathematical model used in this work is based on a two-phase model that accounts for the amorphous and crystalline phases as well as the depolymerization of Teflon in the form of an Arrhenius reaction equation. The model accounts also for temperature-dependent material properties, for unsteady heat inputs and boundary conditions in 3D. The model is implemented in 3D domains of arbitrary geometry with a finite volume discretization on unstructured grids. The numerical solution of the transient reaction-diffusion equation coupled with the Arrhenius-based ablation model advances in time using implicit Crank-Nicolson scheme. For each time step the implicit time advancing is decomposed into multiple sub-problems by a domain decomposition method. Each of the sub-problems is solved in parallel by Newton-Krylov non-linear solver. After each implicit time-advancing step, the rate of ablation and the fraction of depolymerized material are updated explicitly with the Arrhenius-based ablation model. After the computation, the surface of ablation front and the melting surface are recovered from the scalar field of fraction of depolymerized material and the fraction of melted material by post-processing. The code is verified against analytical solutions for the heat diffusion problem and the Stefan problem. The code is validated against experimental data of Teflon ablation. The verification and validation demonstrates the ability of the numerical method in simulating three dimensional ablation of Teflon.
|
2 |
Časově závislé řešení dvourozměrných rozptylových problémů v kvantové mechanice / Časově závislé řešení dvourozměrných rozptylových problémů v kvantové mechaniceVáňa, Martin January 2012 (has links)
The scope of this thesis is in the time-dependent formulation of the two dimensional model of resonant electron-diatomic molecule collisions in the range of low energies. In its time independent form the model was previously numerically solved without the Born-Oppenheimer approximation with use of modern tools such as the finite element method with discrete variable representation (FEM-DVR) or exterior complex scaling (ECS). Within the scope of this model we numerically solve the evolution problem, with use of the Crank-Nicolson method and the Padé approximation. Later we evaluate the cross section of the elastic and some inelastic processes with the correlation function approach. At last we make a comparison of the evolution and the cross sections to time dependent formulation of the local complex potential approximation of the electron-molecule collisions.
|
3 |
A Numerical Model for Nonadiabatic Transitions in MoleculesAgrawal, Devanshu 01 May 2014 (has links)
In molecules, electronic state transitions can occur via quantum coupling of the states. If the coupling is due to the kinetic energy of the molecular nuclei, then electronic transitions are best represented in the adiabatic frame. If the coupling is instead facilitated through the potential energy of the nuclei, then electronic transitions are better represented in the diabatic frame. In our study, we modeled these latter transitions, called ``nonadiabatic transitions.'' For one nuclear degree of freedom, we modeled the de-excitation of a diatomic molecule. For two nuclear degrees of freedom, we modeled the de-excitation of an ethane-like molecule undergoing cis-trans isomerization. For both cases, we studied the dependence of the de-excitation on the nuclear configuration and potential energy of the molecule.
We constructed a numerical model to solve the time-dependent Schr\"{o}dinger Equation for two coupled wave functions. Our algorithm takes full advantage of the sparseness of the numerical system, leading to a final set of equations that is solved recursively using nothing more than the Tridiagonal Algorithm.
We observed that the most effective de-excitation occurred when the molecule transitioned from a stable equilibrium configuration to an unstable equilibrium configuration. This same mechanism is known to drive fast electronic transitions in the adiabatic frame. We concluded that while the adiabatic and diabatic frames are strongly opposed physically, the mathematical mechanism driving electronic transitions in the two frames is in some sense the same.
|
4 |
Impacto do sedimento sobre espécies que interagem = modelagem e simulações de bentos na Enseada Potter / Sediment impact upon interacting species : modeling and numerical simulation of benthos at Potter CoveCarmona Tabares, Paulo Cesar, 1976- 08 August 2012 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T04:55:31Z (GMT). No. of bitstreams: 1
CarmonaTabares_PauloCesar_D.pdf: 24565019 bytes, checksum: 8ebe9aed1d258a0712f49e9711f8d107 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho, construímos um modelo matemático para avaliar as conjecturas existentes acerca do impacto que tem o material inorgânico particulado (sedimento) nas populações bentônicas predominantes na Enseada Potter. Na construção do modelo são utilizadas informações do fenômeno, proporcionadas pelas pesquisas permanentes na região de estudo. Como resultado, logramos comprovar mediante simulações numéricas, o efeito que produz o sedimento na distribuição e abundância das espécies do substrato marinho, constatando neste ecossistema particular as consequências do aquecimento global nessa parte da região antártica. A modelagem é feita com um sistema de equações diferenciais parciais não- lineares sobre um domínio bidimensional irregular (descritiva da região original), o qual é discretizado nas variáveis espaciais por elementos finitos de primeira ordem e na variável temporal pelo Método de Crank-Nicolson. A resolução do sistema não-linear resultante é aproximada através de um método preditor-corretor cuja solução aproximada é visualizada e valorada qualitativamente usando gráficos evolutivos obtidos por simulações em ambiente MATLAB / Abstract: In this work, we built a mathematical model to evaluate existing conjectures about the impact that inorganic particulate material (sediment) has upon predominating benthic populations in Potter Cove. For the mathematical model, phenomena information was that provided by permanent researches in the study area. As a result, by means of numerical simulations, we were able to confirm the effect of sediment over distribution and abundance for species of marine substrate, verifying in this particular ecosystem, the effects of global warming in this specific Antarctic region. Modeling is done with a system of nonlinear partial differential equations over an irregular two-dimensional domain (descriptive of the original region), which is discretized in the spatial variables by first order finite elements and in the time variable by Crank-Nicolson. The resolution of the resulting nonlinear system is approximated by a predictor-corrector method and the solution is displayed and qualitatively valorized using evolutive graphics, obtain in a MATLAB environment / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
5 |
Unconditionally stable finite difference time domain methods for frequency dependent mediaRouf, Hasan January 2010 (has links)
The efficiency of the conventional, explicit finite difference time domain (FDTD)method is constrained by the upper limit on the temporal discretization, imposed by the Courant–Friedrich–Lewy (CFL) stability condition. Therefore, there is a growing interest in overcoming this limitation by employing unconditionally stable FDTD methods for which time-step and space-step can be independently chosen. Unconditionally stable Crank Nicolson method has not been widely used in time domain electromagnetics despite its high accuracy and low anisotropy. There has been no work on the Crank Nicolson FDTD (CN–FDTD) method for frequency dependent medium. In this thesis a new three-dimensional frequency dependent CN–FDTD (FD–CN–FDTD) method is proposed. Frequency dependency of single–pole Debye materials is incorporated into the CN–FDTD method by means of an auxiliary differential formulation. In order to provide a convenient and straightforward algorithm, Mur’s first-order absorbing boundary conditions are used in the FD–CN–FDTD method. Numerical tests validate and confirm that the FD–CN–FDTD method is unconditionally stable beyond the CFL limit. The proposed method yields a sparse system of linear equations which can be solved by direct or iterative methods, but numerical experiments demonstrate that for large problems of practical importance iterative solvers are to be used. The FD–CN–FDTD sparse matrix is diagonally dominant when the time-stepis near the CFL limit but the diagonal dominance of the matrix deteriorates with the increase of the time-step, making the solution time longer. Selection of the matrix solver to handle the FD–CN–FDTD sparse system is crucial to fully harness the advantages of using larger time-step, because the computational costs associated with the solver must be kept as low as possible. Two best–known iterative solvers, Bi-Conjugate Gradient Stabilised (BiCGStab) and Generalised Minimal Residual (GMRES), are extensively studied in terms of the number of iteration requirements for convergence, CPU time and memory requirements. BiCGStab outperforms GMRES in every aspect. Many of these findings do not match with the existing literature on frequency–independent CN–FDTD method and the possible reasons for this are pointed out. The proposed method is coded in Fortran and major implementation techniques of the serial code as well as its parallel implementation in Open Multi-Processing (OpenMP) are presented. As an application, a simulation model of the human body is developed in the FD–CN–FDTD method and numerical simulation of the electromagnetic wave propagation inside the human head is shown. Finally, this thesis presents a new method modifying the frequency dependent alternating direction implicit FDTD (FD–ADI–FDTD) method. Although the ADI–FDTD method provides a computationally affordable approximation of the CN–FDTD method, it exhibits a loss of accuracy with respect to the CN-FDTD method which may become severe for some practical applications. The modified FD–ADI–FDTD method can improve the accuracy of the normal FD–ADI–FDTD method without significantly increasing the computational costs.
|
6 |
Efficient Numerical Methods for Heart Simulation2015 April 1900 (has links)
The heart is one the most important organs in the human body and many other live creatures. The electrical activity in the heart controls the heart function, and many heart diseases are linked to the abnormalities in the electrical activity in the heart. Mathematical equations and computer simulation can be used to model the electrical activity in the heart. The heart models are challenging to solve because of the complexity of the models and the huge size of the problems.
Several cell models have been proposed to model the electrical activity in a single heart cell. These models must be coupled with a heart model to model the electrical activity in the entire heart. The bidomain model is a popular model to simulate the propagation of electricity in myocardial tissue. It is a continuum-based model consisting of non-linear ordinary differential equations (ODEs) describing the electrical activity at the cellular scale and a system of partial differential equations (PDEs) describing propagation of electricity at the tissue scale. Because of this multi-scale, ODE/PDE structure of the model, splitting methods that treat the ODEs and PDEs in separate steps are natural candidates as numerical methods.
First, we need to solve the problem at the cellular scale using ODE solvers. One of the most popular methods to solve the ODEs is known as the Rush-Larsen (RL) method. Its popularity stems from its improved stability over integrators such as the forward Euler (FE) method along with its easy implementation. The RL method partitions the ODEs into two sets: one for the gating variables, which are treated by an exponential integrator, and another for the remaining equations, which are treated by the FE method. The success of the RL method can be understood in terms of its relatively good stability when treating the gating variables. However, this feature would not be expected to be of benefit on cell models for which the stiffness is not captured by the gating equations. We demonstrate that this is indeed the case on a number of stiff cell models. We further propose a new partitioned method based on the combination of a first-order generalization of the RL method with the FE method. This new method leads to simulations of stiff cell models that are often one or two orders of magnitude faster than the original RL method.
After solving the ODEs, we need to use bidomain solvers to solve the bidomain model. Two well-known, first-order time-integration methods for solving the bidomain model are the semi-implicit method and the Godunov operator-splitting method. Both methods decouple the numerical procedure at the cellular scale from that at the tissue scale but in slightly different ways. The methods are analyzed in terms of their accuracy, and their relative performance is compared on one-, two-, and three-dimensional test cases. As suggested by the analysis, the test cases show that the Godunov method is significantly faster than the semi-implicit method for the same level of accuracy, specifically, between 5 and 15 times in the cases presented.
Second-order bidomain solvers can generally be expected to be more effective than first-order bidomain solvers under normal accuracy requirements. However, the simplest and the most commonly applied second-order method for the PDE step, the Crank-Nicolson (CN) method, may generate unphysical oscillations. We investigate the performance of a two-stage, L-stable singly diagonally implicit Runge-Kutta method for solving the PDEs of the bidomain model and present a stability analysis. Numerical experiments show that the enhanced stability property of this method leads to more physically realistic numerical simulations compared to both the CN and Backward Euler (BE) methods.
|
Page generated in 0.0783 seconds