• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 1
  • Tagged with
  • 20
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelisation et validation des générateurs aléatoires cryptographiques pour les systèmes embarqués. / Modeling and validation of cryptographic random generators for embedded systems

Layat, Kevin 17 December 2015 (has links)
L’objet de cette thèse porte sur la modélisation mathématique des générateurs physiques de nombres aléatoires, tout particulièrement dans le contexte des systèmes embarqués. Les axes principaux sont les modèles stochastiques des sources d'entropie, l’établissement de tests statistiques adaptés et l’exploitation des défauts détectés / The purpose of this thesis focuses on the mathematical modeling of physical random number generators, especially in the context of embedded systems. The main axes are the stochastic modeling of entropy sources, the establishment of appropriate statistical tests and the exploitation of detected weaknesses.
12

Calcul de groupes de classes d'un corps de nombres et applications à la cryptologie / Class group computations in number fields and applications to cryptology

Gélin, Alexandre 22 September 2017 (has links)
Dans cette thèse, nous nous intéressons au calcul du groupe de classes d'un corps de nombres. Nous débutons par décrire un algorithme de réduction du polynôme de définition d'un corps de nombres. Il existe une infinité de polynômes qui définissent un corps de nombres fixé, avec des coefficients arbitrairement gros. Notre algorithme calcule celui qui a les plus petits coefficients. L'avantage de connaître un petit polynôme de définition est qu'il simplifie les calculs entre éléments de ce corps de nombres, en impliquant des quantités plus petites. En outre, la connaissance d'un tel polynôme permet l'utilisation d'algorithmes plus efficaces que dans le cas général pour calculer le groupe de classes. L'algorithme général pour calculer la structure du groupe de classes repose sur la réduction d'idéaux, vus comme des réseaux. Nous décrivons et simplifions l'algorithme présenté par Biasse et Fieker en 2014 à ANTS et approfondissons l'analyse de complexité. Nous nous sommes aussi intéressés au cas des corps de nombres définis par un polynôme à petits coefficients. Nous décrivons un algorithme similaire au crible par corps de nombres (NFS) dont la complexité en fonction des paramètres du corps de nombres peut atteindre L(1/3). Enfin, nos algorithmes peuvent être adaptés pour résoudre un problème lié : le Problème de l'Idéal Principal. Étant donné n'importe quelle base d'un idéal principal (généré par un seul élément), nous sommes capables de retrouver ce générateur. Cette application de nos algorithmes fournit une attaque efficace contre certains schémas de chiffrement homomorphe basés sur ce problème. / In this thesis, we focus on class group computations in number fields. We start by describing an algorithm for reducing the size of a defining polynomial of a number field. There exist infinitely many polynomials that define a specific number field, with arbitrarily large coefficients, but our algorithm constructs the one that has the absolutely smallest coefficients. The advantage of knowing such a ``small'' defining polynomial is that it makes calculations in the number field easier because smaller values are involved. In addition, thanks to such a small polynomial, one can use specific algorithms that are more efficient than the general ones for class group computations. The generic algorithm to determine the structure of a class group is based on ideal reduction, where ideals are viewed as lattices. We describe and simplify the algorithm presented by Biasse and Fieker in 2014 at ANTS and provide a more thorough complexity analysis for~it. We also examine carefully the case of number fields defined by a polynomial with small coefficients. We describe an algorithm similar to the Number Field Sieve, which, depending on the field parameters, may reach the hope for complexity L(1/3). Finally, our results can be adapted to solve an associated problem: the Principal Ideal Problem. Given any basis of a principal ideal (generated by a unique element), we are able to find such a generator. As this problem, known to be hard, is the key-point in several homomorphic cryptosystems, the slight modifications of our algorithms provide efficient attacks against these cryptographic schemes.
13

Méthodes logicielles formelles pour la sécurité des implémentations de systèmes cryptographiques / Formal sofwtare methods for cryptosystems implementation security

Rauzy, Pablo 13 July 2015 (has links)
Les implémentations cryptographiques sont vulnérables aux attaques physiques, et ont donc besoin d'en être protégées. Bien sûr, des protections défectueuses sont inutiles. L'utilisation des méthodes formelles permet de développer des systèmes tout en garantissant leur conformité à des spécifications données. Le premier objectif de ma thèse, et son aspect novateur, est de montrer que les méthodes formelles peuvent être utilisées pour prouver non seulement les principes des contre-mesures dans le cadre d'un modèle, mais aussi leurs implémentations, étant donné que c'est là que les vulnérabilités physiques sont exploitées. Mon second objectif est la preuve et l'automatisation des techniques de protection elles-même, car l'écriture manuelle de code est sujette à de nombreuses erreurs, particulièrement lorsqu'il s'agit de code de sécurité. / Implementations of cryptosystems are vulnerable to physical attacks, and thus need to be protected against them. Of course, malfunctioning protections are useless. Formal methods help to develop systems while assessing their conformity to a rigorous specification. The first goal of my thesis, and its innovative aspect, is to show that formal methods can be used to prove not only the principle of the countermeasures according to a model, but also their implementations, as it is where the physical vulnerabilities are exploited. My second goal is the proof and the automation of the protection techniques themselves, because handwritten security code is error-prone.
14

Testabilité versus Sécurité : Nouvelles attaques par chaîne de scan & contremesures / Testability versus Security : New scan-based attacks & countermeasures

Joaquim da Rolt, Jean 14 December 2012 (has links)
Dans cette thèse, nous analysons les vulnérabilités introduites par les infrastructures de test, comme les chaines de scan, utilisées dans les circuits intégrés digitaux dédiés à la cryptographie sur la sécurité d'un système. Nous développons de nouvelles attaques utilisant ces infrastructures et proposons des contre-mesures efficaces. L'insertion des chaînes de scan est la technique la plus utilisée pour assurer la testabilité des circuits numériques car elle permet d'obtenir d'excellents taux de couverture de fautes. Toutefois, pour les circuits intégrés à vocation cryptographique, les chaînes de scan peuvent être utilisées comme une porte dérobée pour accéder à des données secrètes, devenant ainsi une menace pour la sécurité de ces données. Nous commençons par décrire une série de nouvelles attaques qui exploitent les fuites d'informations sur des structures avancées de conception en vue du test telles que le compacteur de réponses, le masquage de valeur inconnues ou le scan partiel, par exemple. Au travers des attaques que nous proposons, nous montrons que ces structures ne protégent en rien les circuits à l'inverse de ce que certains travaux antérieurs ont prétendu. En ce qui concerne les contre-mesures, nous proposons trois nouvelles solutions. La première consiste à déplacer la comparaison entre réponses aux stimuli de test et réponses attenduesde l'équipement de test automatique vers le circuit lui-même. Cette solution entraine un surcoût de silicium négligeable, n'aucun impact sur la couverture de fautes. La deuxième contre-mesure viseà protéger le circuit contre tout accès non autorisé, par exemple au mode test du circuit, et d'assurer l'authentification du circuit. A cet effet, l'authentification mutuelle utilisant le protocole de Schnorr basé sur les courbes elliptiques est mis en oeuvre. Enfin, nous montronsque les contre-mesures algorithmiques agissant contre l'analyse différentielle peuvent être également utilisées pour se prémunir contre les attaques par chaine de scan. Parmi celles-ci on citera en particulier le masquage de point et le masquage de scalaire. / In this thesis, we firstly analyze the vulnerabilities induced by test infrastructures onto embedded secrecy in digital integrated circuits dedicated to cryptography. Then we propose new scan-based attacks and effective countermeasures. Scan chains insertion is the most used technique to ensure the testability of digital cores, providing high-fault coverage. However, for ICs dealing with secret information, scan chains can be used as back doors for accessing secret data, thus becominga threat to device's security. We start by describing a series of new attacks that exploit information leakage out of advanced Design-for-Testability structures such as response compaction, X-Masking and partial scan. Conversely to some previous works that proposed that these structures are immune to scan-based attacks, we show that our new attacks can reveal secret information that is embedded inside the chip boundaries. Regarding the countermeasures, we propose three new solutions. The first one moves the comparison between test responses and expected responses from the AutomaticTest Equipment to the chip. This solution has a negligible area overhead, no effect on fault coverage. The second countermeasure aims to protect the circuit against unauthorized access, for instance to the test mode, and also ensure the authentication of the circuit. For thatpurpose, mutual-authentication using Schnorr protocol on Elliptic Curves is implemented. As the last countermeasure, we propose that Differential Analysis Attacks algorithm-level countermeasures, suchas point-blinding and scalar-blinding can be reused to protect the circuit against scan-based attacks.
15

Cryptanalyse de chiffrements par blocs avec la méthode des variances / Secret-key cryptanalysis based on the variance method.

Marriere, Nicolas 20 December 2017 (has links)
La première partie de la thèse porte sur l'utilisation de la méthode des variances dans le cadre des attaques différentielles sur des schémas de Feistel généralisés. Cette méthode permet d'améliorer des attaques sur deux points : la complexité en données ou le nombre de tours couvert par l'attaque.Afin d'atteindre ce but, un outil a été développé permettant de calculer la valeur exacte de l'espérance et de la variance et nous nous servons alors de cette précision pour améliorer les attaques.La seconde partie porte sur une famille de schémas de chiffrement : les EGFN.Nous avons utilisé la méthode des variances et notre outil afin de construire des attaques différentielles. Des simulations ont été effectuées afin de confirmer les résultats.Dans la dernière partie, nous nous intéressons à LILLIPUT, un système de chiffrement concret issu des EGFN. Nous avons effectué une analyse différentielle et monté des attaques avec une structure spécifique.Ces attaques sont trouvées par un programme cherchant des attaques automatiquement. Nous avons notamment mis en avant la possibilité d'études sur les attaques différentielles improbables. / The first part of the thesis is the cryptanalysis of generalized Feistel networks with the use of the variance method.This method allows to improve existing attacks by two ways: data complexity or the number of rounds. In order to do that, we have developed a tool which computes the right values of expectations and variances.It provides a better analysis of the attacks.In the second part, we have studied the EGFN a new family of generalized Feistel networks. We have used the variance method and our tool in order to build some differential attacks. Simulations were made to confirm the theoritical study.In the last part, we have studied LILLIPUT, a concret cipher based on the EGFN.We have provided a differential analysis and build differential attacks which have unusual conditions. These attacks were found empirically by a tool that automatically look for differential attacks. In particular, we have highlighted some improbable differential attacks.
16

Algorithmes de calcul de logarithmes discrets dans les corps finis

Thomé, Emmanuel 12 May 2003 (has links) (PDF)
Le calcul de logarithmes discrets est un problème central en cryptologie. Lorsqu'un algorithme sous-exponentiel pour résoudre ce problème existe, le cryptosystème concerné n'est pas nécessairement considéré comme disqualifié, et il convient d'actualiser avec soin l'état de l'art de la cryptanalyse. Les travaux de ce mémoire s'inscrivent dans cette optique. Nous décrivons en particulier comment nous avons atteint un record de calculs de logarithmes discrets: \GFn(607).<br /><br />Dans une première partie, nous exposons les différentes améliorations que nous avons apportées à l'algorithme de Coppersmith pour le calcul de logarithmes discrets en caractéristique 2. Ces améliorations ont rendu possible le record que nous avons atteint. La portée de ce calcul dépasse<br />le simple cadre des corps finis, à cause de l'existence de la réduction MOV d'une part, et de la récente introduction des cryptosystèmes fondés sur l'identité.<br /><br />On s'intéresse plus en détail, dans une seconde partie du mémoire, au problème classique de la résolution d'un système linéaire creux défini sur un corps fini, porté aux limites de ce que la technologie (théorique et pratique) permet. Nous montrons comment une amélioration substantielle de l'algorithme de Wiedemann par blocs a rendu celui-ci compétitif pour la résolution d'un grand système linéaire creux sur \GF p.<br /><br />Une partie de ce mémoire est consacrée au point de vue de l'expérimentateur, grand utilisateur de moyens de calcul, de la surcharge de travail humain que cela impose, et des constatations que cette position amène.
17

Sécurité et efficacité des schémas cryptographiques.

Phan, Duong Hieu 16 September 2005 (has links) (PDF)
La sécurité prouvée est une branche relativement jeune de la cryptologie dont l'objectif est d'analyser formellement le but ultime des schémas cryptographiques: la sécurité. Elle ne cherche pas à atteindre la sécurité absolue mais plutôt à identifier les conditions suffisantes, au sens de la théorie de la complexité, pour garantir la sécurité. La sécurité prouvée est en étroite relation avec les trois principaux mouvements de la cryptographie: la formalisation des notions de sécurité; la construction des schémas formellement prouvés sûrs et la recherche de nouvelles fonctionnalités pour la cryptographie. Dans cette thèse, nous abordons dans un premier temps l'analyse des notions de sécurité, à la fois pour le chiffrement asymétrique et pour le chiffrement symétrique. D'une part, nous étudions en détails les modèles d'attaque et les relations entre eux pour le chiffrement asymétrique. D'autre part, pour le chiffrement par bloc, nous mettons en évidence la relation entre la notion traditionnelle du chiffrement par bloc, i.e. permutation (super) pseudo–aléatoire, et avec la notion de base de la confidentialité, i.e. sécurité sémantique. Dans un deuxième temps, nous proposons de nouveaux schémas efficaces et prouvés sûrs pour la cryptographie asymétrique dans le modèle de l'oracle aléatoire (de nouveaux paddings pour le chiffrement et des paddings universels pour le chiffrement et la signature). Nous présentons, de plus, une nouvelle catégorie de schémas prouvés sûrs: les schémas de chiffrement sans redondance. Jusqu'à présent, la redondance était nécessaire pour prouver la sécurité. Nous proposons, dans la troisième partie, une nouvelle fonctionnalité du traçage de pirates pour la diffusion des données chiffrées: la traçabilité publique. Nous présentons aussi un schéma satisfaisant cette propriété. Ce schéma est ensuite généralisé à un schéma quasi optimal selon le critère du taux entre de la taille des données chiffrés et celle des données originelles.
18

Vers l'efficacité et la sécurité du chiffrement homomorphe et du cloud computing / Towards efficient and secure Fully Homomorphic Encryption and cloud computing

Chillotti, Ilaria 17 May 2018 (has links)
Le chiffrement homomorphe est une branche de la cryptologie, dans laquelle les schémas de chiffrement offrent la possibilité de faire des calculs sur les messages chiffrés, sans besoin de les déchiffrer. L’intérêt pratique de ces schémas est dû à l’énorme quantité d'applications pour lesquels ils peuvent être utilisés. En sont un exemple le vote électronique, les calculs sur des données sensibles, comme des données médicales ou financières, le cloud computing, etc..Le premier schéma de chiffrement (complètement) homomorphe n'a été proposé qu'en 2009 par Gentry. Il a introduit une technique appelée bootstrapping, utilisée pour réduire le bruit des chiffrés : en effet, dans tous les schémas de chiffrement homomorphe proposés, les chiffrés contiennent une petite quantité de bruit, nécessaire pour des raisons de sécurité. Quand on fait des calculs sur les chiffrés bruités, le bruit augmente et, après avoir évalué un certain nombre d’opérations, ce bruit devient trop grand et, s'il n'est pas contrôlé, risque de compromettre le résultat des calculs.Le bootstrapping est du coup fondamental pour la construction des schémas de chiffrement homomorphes, mais est une technique très coûteuse, qu'il s'agisse de la mémoire nécessaire ou du temps de calcul. Les travaux qui on suivi la publication de Gentry ont eu comme objectif celui de proposer de nouveaux schémas et d’améliorer le bootstrapping pour rendre le chiffrement homomorphe faisable en pratique. L’une des constructions les plus célèbres est GSW, proposé par Gentry, Sahai et Waters en 2013. La sécurité du schéma GSW se fonde sur le problème LWE (learning with errors), considéré comme difficile en pratique. Le bootstrapping le plus rapide, exécuté sur un schéma de type GSW, a été proposé en 2015 par Ducas et Micciancio. Dans cette thèse on propose une nouvelle variante du schéma de chiffrement homomorphe de Ducas et Micciancio, appelée TFHE.Le schéma TFHE améliore les résultats précédents, en proposant un bootstrapping plus rapide (de l'ordre de quelques millisecondes) et des clés de bootstrapping plus petites, pour un même niveau de sécurité. TFHE utilise des chiffrés de type TLWE et TGSW (scalaire et ring) : l’accélération du bootstrapping est principalement due à l’utilisation d’un produit externe entre TLWE et TGSW, contrairement au produit externe GSW utilisé dans la majorité des constructions précédentes.Deux types de bootstrapping sont présentés. Le premier, appelé gate bootstrapping, est exécuté après l’évaluation homomorphique d’une porte logique (binaire ou Mux) ; le deuxième, appelé circuit bootstrapping, peut être exécuté après l’évaluation d’un nombre d'opérations homomorphiques plus grand, pour rafraîchir le résultat ou pour le rendre compatible avec la suite des calculs.Dans cette thèse on propose aussi de nouvelles techniques pour accélérer l’évaluation des calculs homomorphiques, sans bootstrapping, et des techniques de packing des données. En particulier, on présente un packing, appelé vertical packing, qui peut être utilisé pour évaluer efficacement des look-up table, on propose une évaluation via automates déterministes pondérés, et on présente un compteur homomorphe appelé TBSR qui peut être utilisé pour évaluer des fonctions arithmétiques.Pendant les travaux de thèse, le schéma TFHE a été implémenté et il est disponible en open source.La thèse contient aussi des travaux annexes. Le premier travail concerne l’étude d’un premier modèle théorique de vote électronique post-quantique basé sur le chiffrement homomorphe, le deuxième analyse la sécurité des familles de chiffrement homomorphe dans le cas d'une utilisation pratique sur le cloud, et le troisième ouvre sur une solution différente pour le calcul sécurisé, le calcul multi-partite. / Fully homomorphic encryption is a new branch of cryptology, allowing to perform computations on encrypted data, without having to decrypt them. The main interest of homomorphic encryption schemes is the large number of practical applications for which they can be used. Examples are given by electronic voting, computations on sensitive data, such as medical or financial data, cloud computing, etc..The first fully homomorphic encryption scheme has been proposed in 2009 by Gentry. He introduced a new technique, called bootstrapping, used to reduce the noise in ciphertexts: in fact, in all the proposed homomorphic encryption schemes, the ciphertexts contain a small amount of noise, which is necessary for security reasons. If we perform computations on noisy ciphertexts, the noise increases and, after a certain number of operations, the noise becomes to large and it could compromise the correctness of the final result, if not controlled.Bootstrapping is then fundamental to construct fully homomorphic encryption schemes, but it is very costly in terms of both memory and time consuming.After Gentry’s breakthrough, the presented schemes had the goal to propose new constructions and to improve bootstrapping, in order to make homomorphic encryption practical. One of the most known schemes is GSW, proposed by Gentry, Sahai et Waters in 2013. The security of GSW is based on the LWE (learning with errors) problem, which is considered hard in practice. The most rapid bootstrapping on a GSW-based scheme has been presented by Ducas and Micciancio in 2015. In this thesis, we propose a new variant of the scheme proposed by Ducas and Micciancio, that we call TFHE.The TFHE scheme improves previous results, by performing a faster bootstrapping (in the range of a few milliseconds) and by using smaller bootstrapping keys, for the same security level. TFHE uses TLWE and TGSW ciphertexts (both scalar and ring): the acceleration of bootstrapping is mainly due to the replacement of the internal GSW product, used in the majority of previous constructions, with an external product between TLWE and TGSW.Two kinds of bootstrapping are presented. The first one, called gate bootstrapping, is performed after the evaluation of a homomorphic gate (binary or Mux); the second one, called circuit bootstrapping, can be executed after the evaluation of a larger number of homomorphic operations, in order to refresh the result or to make it compatible with the following computations.In this thesis, we also propose new techniques to improve homomorphic computations without bootstrapping and new packing techniques. In particular, we present a vertical packing, that can be used to efficiently evaluate look-up tables, we propose an evaluation via weighted deterministic automata, and we present a homomorphic counter, called TBSR, that can be used to evaluate arithmetic functions.During the thesis, the TFHE scheme has been implemented and it is available in open source.The thesis contains also ancillary works. The first one concerns the study of the first model of post-quantum electronic voting based on fully homomorphic encryption, the second one analyzes the security of homomorphic encryption in a practical cloud implementation scenario, and the third one opens up about a different solution for secure computing, multi-party computation.
19

Des codes correcteurs pour sécuriser l'information numérique

Herbert, Vincent 05 December 2011 (has links) (PDF)
Les codes correcteurs d'erreurs sont utilisés pour reconstituer les données numériques, qui sont sujettes à des altérations lors de leur stockage et de leur transport. Il s'agit là de l'utilisation principale des codes correcteurs mais ils peuvent encore être employés en cryptographie. Ils sont dans ce contexte un outil permettant, entre autres choses, de chiffrer des données et d'authentifier des personnes. Ces différents aspects sont traités dans ce document. Pour commencer, nous étudions la classe de codes cycliques possédant un ensemble de définition de la forme {1, 2^i+1, 2^j+1}, où i et j désignent des entiers positifs distincts. Nous concentrons notre attention sur la caractérisation des codes trois-correcteurs appartenant à cette classe ainsi que sur la distribution de poids de ces codes. Nous améliorons l'algorithme de Schaub, qui donne une minoration de la distance minimale des codes cycliques. Nous mettons en oeuvre cet algorithme pour calculer l'immunité spectrale de fonctions booléennes. Cette quantité est reliée à la distance minimale de codes cycliques et est importante pour garantir la sécurité dans certains cryptosystèmes de chiffrement à flot. Dans un second temps, nous proposons une solution pour accélérer le calcul des racines de polynômes dans des corps finis de caractéristique deux. Ce calcul est la phase la plus lente du déchiffrement des cryptosystèmes de type McEliece basés sur les codes de Goppa binaires classiques. Nous fournissons une analyse de la complexité de l'algorithme sous-jacent baptisé BTZ. Nous achevons nos travaux par une étude des protocoles d'authentification à bas coût, dérivés du protocole HB, en adoptant une approche basée sur le problème du décodage par syndrome, plutôt que par l'approche standard, fondée sur le problème LPN.
20

Analyse d'accumulateurs d'entropie pour les générateurs aléatoires cryptographiques / Analysis of cryptographic random number generator and postprocessing

Julis, Guenaëlle de 18 December 2014 (has links)
En cryptographie, l'utilisation de nombres aléatoires est fréquente (graine, token, ...) et une mauvaise génération d'aléa peut compromettre toute la sécurité d'un protocole, comme en témoigne régulièrement l'actualité. Les générateurs de nombres aléatoires à usage cryptographique sont des composants formés de trois modules : la source brute qui produit de l'aléa (un algorithme ou un phénomène physique), un retraitement pour corriger les défauts de la source, et un retraitement cryptographique pour obtenir l'aléa final. Cette thèse se focalise sur l'analyse des générateurs issus d'une source physique, en vue de dégager des retraitements adaptés à leurs propriétés et résistants à des perturbations de leur environnement d'utilisation. La complexité des dispositifs entravant souvent la formulation explicite d'un modèle stochastique prouvé, leur évaluation repose principalement sur une analyse statistique. Or, les tests statistiques, principale méthode recommandée par les institutions gouvernementales (ANSSI, BSI, NIST) pour certifier ces composants, peuvent détecter des anomalies mais ne permettent pas de les identifier, et de les caractériser. Les travaux de cette thèse structurent la modélisation d'une source d'aléa, vue comme une suite de variables aléatoires, affinent les tests statistiques, et ajoutent une analyse temporelle pour détecter et expliciter ses anomalies au niveau global ou local. Les résultats ont été implantés dans une librairie composée d'un simulateur de perturbations, des outils statistiques et temporels obtenus, des batteries de tests recommandées (FIPS, AIS31, Test U01, SP800), et de retraitements appropriés à certaines anomalies. La structure mise en place a permis d'extraire des familles d'anomalies de motifs dont les propriétés rendent certains tests incapables de distinguer la source anormale d'une source idéalement aléatoire. L'analyse des faiblesses inhérentes aux méthodes statistiques a montré que l'interprétation d'un test par intervalle de rejet ou taux de réussite n'est pas adapté à la détection de certaines fautes de transition. Elle a aussi permis d'étudier les méthodes d'estimations d'entropie, notamment les estimateurs proposés dans la norme SP800-90. Par ailleurs, les paramètres de spécifications de certains générateurs, dont un déduit du standard de chiffrement AES, se sont avérés distinguables grâce aux statistiques de test. Les outils temporels développés évaluent la structure des anomalies, leur évolution au cours du temps et analysent les motifs déviants au voisinage d'un motif donné. Cela a permis d'une part d'appliquer les tests statistiques avec des paramètres pertinents, et d'autre part de présenter des retaitements dont la validité repose sur la structure des anomalies et non sur leur amplitude. / While random numbers are frequently used in cryptography (seed, token, ...), news regurlarly prove how bad randomness generation can compromise the wole security of a protocol. Random number generators for crypthography are components with three steps : a source (an algorithm or physical phenomenon) produces raw numbers which are two times postprocessed to fix anomalies. This thesis focuses on the analysis of physical random bit generators in order to extract postprocessing which will be adapted to the anomalies of the source. As the design of a physical random bit generator is complex, its evaluation is mainly a statistical analysis with hypothesis testing. However, the current standards (AIS31, FIPS140-2, Test U01, SP800) can not provide informations to characterize anomalies. Thus, this thesis adjust several tests and add a time analysis to identify and to make global and local anomalies explicit. A C library was developped, providing anomalies simulator and tools to apply statistical and time analysis results on random bit generators.

Page generated in 0.046 seconds