• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 18
  • 13
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 75
  • 54
  • 33
  • 28
  • 24
  • 23
  • 19
  • 17
  • 16
  • 16
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Crystal engineering, Bio Pharmaceutics and Cell biology of active pharmaceutical ingredient (drug) nanoparticles. Formation and cell interaction of hydrocortisone and prednisolone nanoparticles.

Zghebi, Salwa S. January 2010 (has links)
Nanotechnology applications have emerged enormously in recent times. Of particular interest is that area that overlaps the areas of nanotechnology, biology and medicine: nanomedicine. One advantage of nanomedicines is it that it can be used as an enabling technology by pharmaceutical researchers and industry to overcome issues associated with the low bioavailability of hydrophobic drugs. In the first part of the current study, nanosuspensions of two of hydrophobic steroid drugs: hydrocortisone and prednisolone were produced. Nanosuspensions were prepared using a bottom-up approach: the anti-solvent precipitation method using microfluidic reactors. Surface modification was carried out on these nanosuspensions using cationic surfactants to obtain nanoparticles with different levels of surface positive charge as indicated by ¿-potential values. Dynamic light scattering (DLS) and transmission electron microscope (TEM) techniques were used to characterize the prepared nanoparticles. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) were also used to characterize hydrocortisone nanoparticles. In the second part, cellular uptake of both coated and uncoated nanoparticles by HaCaT keratinocytes cell line was examined and indicated by quantifying the anti- inflammatory effect of nanoparticles on the LPS-induced inflammation. Also, TEM was employed to evaluate the cellular uptake of hydrocortisone nanoparticles. Results showed higher ant-inflammatory effect of coated nanoparticles over uncoated nanoparticles. Furthermore, the anti-inflammatory effect of coated nanoparticles was correlated to the degree of positive surface charge. / Libyan government
82

Crystal Engineering of Giant Molecules Based on Perylene Diimide Conjugated Polyhedral Oligomeric Silsesquioxane Nano-Atom

Ren, He 09 June 2016 (has links)
No description available.
83

Solvent Free Technologies for Polymer based Crystal Engineering and Drug Delivery

Korde, Sachin A. January 2015 (has links)
Current research focuses on the effect of different continuous solid state shear based processing for the production of pharmaceutical amorphous system and cocrystals for poorly water soluble APIs. The S3M technology is getting first time reported for its application in pharmaceutical field and it is considered as technology with good potential for development of pharmaceutical dosage forms. The main objectives of this study include the effect of two solid state shear processes on the product properties in case of solid dispersions and cocrystals. Hot melt extrusion technology has been widely explored for the production of pharmaceutical solid dispersions and cocrystals, it would be helpful to compare how the new invented S3M technology will differ from the existing solid state shear process. The S3M has been also explored for the advantages over HME process in terms of residence time, plasticiser free dispersions, effect of process on degradation of drugs during processing. For this purpose, the process and material modifications during operation of these two technologies was important aspects of this study. The pharmaceutical drugs chosen for the solid dispersion purpose were carbamazepine, ibuprofen, glibenclamide which are BCS class II drugs and paracetamol from BCS class III drug was selected as model drug for solid dispersion manufacturing with PVP. VA64, HPMCP HP55, HPMCAS, Ethyl cellulose as polymers. In case of cocrystals selected drugs were carabamazepine, caffeine, paracetamol and ibuprofen with co-formers nicotinamide, saccharin, salicylic acid, glutaric acid, oxalic acid, maleic acid. The selections of co-formers were done on the basis of functional group complementarity between drug and co-former. All the details about the pairs for cocrystals and for solid dispersions are given in experimental section. Carbamazepine has been explored in depth for solid dispersions with different polymers and with different co-formers in case of cocrystals. The effect of process variables and amount of shear applied during processing was deciding factor in product output and quality. The end product in case of both the solid dispersions and cocrystals varied in their physicochemical, morphological and drug release properties HME process needed addition of plasticisers during preparation of solid dispersions whereas S3M was plasticiser free process which gave good insight on how this will affect the product performance during evaluation studies. The solid dispersions in case of HME were had smooth surfaces and which are non-porous in nature whereas in case of S3M the solid dispersions were highly porous in nature. The differences in the structural and morphological features of solid dispersions somehow did not affect the drug release of drug during in-vitro dissolution studies and both the solid dispersions did not show much difference in drug release. In case of cocrystals processing on S3M it was observed that the S3M process is dependent on the use of polymer as process aid. For this purpose PEO, PVP VA64 and HPMCP HP55 were selected as model polymer as process aid during processing of cocrystals, out of which PEO has been explored widely as processing aid due to its process suitability, low melting and ability to withstand high shear during processing. PVP VA64 was used only in case of carbamazepine cocrystals with salicylic acid and HPMCP HP55 in case of caffeine cocrystals with maleic acid. The effect of concentration of PEO in case of carbamazepine cocrystals as processing aid was studied (concentration range 5%, 10%, 15%, 25% w/w). The concentration of PEO in case of HME cocrystals had direct effect on the drug release of drug dissolution studies which was reduced in case of higher concentration of PEO (25% w/w), which was not observed in case of S3M processes carbamazepine cocrystals. The product in case of cocrystals by S3M was thread like structures whereas in case of HME cocrystals were in form of screw shaped compact mass. The difference in morphological and structural properties of cocrystals did not had major effect on drug release in case of S3M process but in case of HME processed cocrystals the higher amount of polymer slowed the drug release. The degradation studies in case of drugs carbamazepine, paracetamol were carried out whereas in case of polymer for HPMCP HP55 were carried out. It was found that HME processed samples showed higher degradation as compared to S3M processed one in both the cases solid dispersions and cocrystals. This can be attributed to high residence time in case of HME as compared to S3M process. The effect of two high shear processes HME and S3M had significant effect on the morphological and structural properties of the solid dispersions and cocrystals. The variation in the structural and morphological properties did not have direct effect on the drug release of drug during dissolution studies. HME and S3M both the processes had some positive and some negative aspects within them for processing of pharmaceutical dispersions and cocrystals. In case of HME the use of plasticiser is mandatory to maintain low torque levels during processing and to avoid blockage of extruder barrel, whereas in case of S3M the process is plasticiser independent and processing of solid dispersion is very easy as compared to HME with low residence time. Processing of plain drug or co-former was easy in case of HME whereas in case of S3M processing it was mandatory to use polymer as processing aid specially during processing of cocrystals. In case of process controls HME has excellent control over the process parameters which can be controlled and manipulated as per requirement, whereas S3M technology needs to have technical modifications to have better control over its processing parameters. The S3M can be a revolutionary technology for pharmaceutical industry once it is upgraded with better control and optimised process parameters.
84

Crystal and Particle Engineering: Pharmaceutical Cocrystals through Antisolvent and Liquid-Liquid Phase Separation Technologies

Sajid, Muhammad A. January 2019 (has links)
The effects of polymer concentration and solvents on cocrystal morphology of low solubility drugs were investigated, both of which had an impact. The melting temperatures also decreased with increasing polymer concentration. Placing the binding agent, benzene, at different interfaces induced morphological changes, such as formation of porous cocrystals. Previously liquid-liquid phase separation (LLPS) has been reported as a hindrance in the crystallisation process impeding further development. A phase diagram was constructed, and different phases were categorised into 4 types. After separation of the highly concentrated amorphous Oil Phase II, it was prone to gradual crystallisation. Crystallisation took place over 30-60 minutes; this allowed the in-situ monitoring. A novel cocrystallisation technique was developed; from (LLPS). Cocrystals of indomethacin with saccharin and nicotinamide were obtained by mixing Oil Phase II with the coformers. In-situ monitoring by spectroscopic had gradual changes in spectra; characteristic peaks increased in height and area with the formation of crystals until the reaction was complete. With crystal formation, the XRD spectra gradually had a sharper baseline due to a decrease in the amorphous indomethacin. The photoluminescence (PL) spectra displayed several peaks coupling into one large hump together with increasing intensity as the sample crystallised. There was a shift in the peak absorbance of the pure drug crystals obtained from LLPS and the indomethacin:saccharin cocrystal obtained from LLPS. Amorphous stabilisation was achieved by mixing polymer (PVP) with Oil Phase II. There were no changes to the XRD diffractogram as the sample did not undergo crystallisation.
85

Crystal Structure Prediction and Isostructurality of Three Small Molecule

Asmadi, Aldi, Kendrick, John, Leusen, Frank J.J. January 2010 (has links)
No / A crystal structure prediction (CSP) study of three small, rigid and structurally related organic compounds (differing only in the position and number of methyl groups) is presented. A tailor-made force field (TMFF; a non-transferable force field specific for each molecule) was constructed with the aid of a dispersion-corrected density functional theory method (the hybrid method). Parameters for all energy terms in each TMFF were fitted to reference data generated by the hybrid method. Each force field was then employed during structure generation. The experimentally observed crystal structures of two of the three molecules were found as the most stable crystal packings in the lists of their force-field-optimised structures. A number of the most stable crystal structures were re-optimised with the hybrid method. One experimental crystal structure was still calculated to be the most stable structure, whereas for another compound the experimental structure became the third most stable structure according to the hybrid method. For the third molecule, the experimentally observed polymorph, which was found to be the fourth most stable form using its TMFF, became the second most stable form. Good geometrical agreements were observed between the experimental structures and those calculated by both methods. The average structural deviation achieved by the TMFFs was almost twice that obtained with the hybrid method. The TMFF approach was extended by exploring the accuracy of a more general TMFF (GTMFF), which involved fitting the force-field parameters to the reference data for all three molecules simultaneously. This GTMFF was slightly less accurate than the individual TMFFs but still of sufficient accuracy to be used in CSP. A study of the isostructural relationships between these molecules and their crystal lattices revealed a potential polymorph of one of the compounds that has not been observed experimentally and that may be accessible in a thorough polymorph screen, through seeding, or through the use of a suitable tailor-made additive.
86

A major advance in crystal structure prediction.

Neumann, M.A., Leusen, Frank J.J., Kendrick, John 20 February 2008 (has links)
No / A crystal ball? A new method for crystal structure prediction combines a tailor-made force field with a density functional theory method incorporating a van der Waals correction for dispersive interactions. In a blind test, the method predicts the correct crystal structure for all four compounds, one of which is a cocrystal. The picture shows the predicted structure of one of the compounds in green and the experimental structure in blue.
87

Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates.

Blagden, Nicholas, de Matas, Marcel, Gavan, Pauline T., York, Peter 2007 July 1930 (has links)
No / The increasing prevalence of poorly soluble drugs in development provides notable risk of new products demonstrating low and erratic bioavailabilty with consequences for safety and efficacy, particularly for drugs delivered by the oral route of administration. Although numerous strategies exist for enhancing the bioavailability of drugs with low aqueous solubility, the success of these approaches is not yet able to be guaranteed and is greatly dependent on the physical and chemical nature of the molecules being developed. Crystal engineering offers a number of routes to improved solubility and dissolution rate, which can be adopted through an in-depth knowledge of crystallisation processes and the molecular properties of active pharmaceutical ingredients. This article covers the concept and theory of crystal engineering and discusses the potential benefits, disadvantages and methods of preparation of co-crystals, metastable polymorphs, high-energy amorphous forms and ultrafine particles. Also considered within this review is the influence of crystallisation conditions on crystal habit and particle morphology with potential implications for dissolution and oral absorption.
88

Nanosizing of hydrocortisone using microfluidic reactors.

Ali, H.R.H., York, Peter, Blagden, Nicholas January 2008 (has links)
No / The formulation of poorly water-soluble drugs is a challenging problem within pharmaceutical development. Recently, formulation using nanoparticles was highlighted as showing great potential to improve the dissolution and solubility characteristics of poorly water soluble drugs.
89

Creation of ternary multicomponent crystals by exploitation of charge-transfer interactions

Seaton, Colin C., Blagden, Nicholas, Munshi, Tasnim, Scowen, Ian J. January 2013 (has links)
No / Four new ternary crystalline molecular complexes have been synthesised from a common 3,5-dinitrobenzoic acid (3,5-dnda) and 4,4'-bipyridine (bipy) pairing with a series of amino-substituted aromatic compounds (4-aminobenzoic acid (4-aba), 4-(N,N-dimethylamino)benzoic acid (4-dmaba), 4-aminosalicylic acid (4-asa) and sulfanilamide (saa)). The ternary crystals were created through the application of complementary charge transfer and hydrogen-bonding interactions. For these systems a dimer was created through a charge-transfer interaction between two of the components, while hydrogen bonding between the third molecule and this dimer completed the construction of the ternary co-crystal. All resulting structures display the same acidpyridine interaction between 3,5-dnba and bipy. However, changing the third component causes the proton of this bond to shift from neutral OHN to a salt form, O(-) HN(+) , as the nature of the group hydrogen bonding to the carboxylic acid was changed. This highlights the role of the crystal environment on the level of proton transfer and the utility of ternary systems for the study of this process.
90

Building up co-crystals: structural motif consistencies across families of co-crystals

01 May 2022 (has links)
Yes / The creation of co-crystals as a route to creating new pharmaceutical phases with modified or defined physicochemical properties is an area of intense research. Much of the current research has focused on creating new phases for numerous active pharmaceutical ingredients (APIs) to alter physical properties such as low solubilities, enhancing processability or stability. Such studies have identified suitable co-formers and common bonding motifs to aid with the design of new co-crystals but understanding how the changes in the molecular structure of the components are reflected in the packing and resulting properties is still lacking. This lack of insight means that the design and growth of new co-crystals is still a largely empirical process with co-formers selected and then attempts to grow the different materials undertaken to evaluate the resulting properties. This work will report on the results of a combination of crystal structure database analysis with computational chemistry studies to identify what structural features are retained across a selection of families of co-crystals with common components. The competition between different potential hydrogen bonding motifs was evaluated using ab initio quantum mechanical calculations and this was related to the commonality in the packing motifs when observed. It is found while the stronger local bonding motifs are often retained within systems, the balance of weaker long-range packing forces gives rise to many subtle shifts in packing leading to greater challenges in the prediction of final crystal structures.

Page generated in 0.0934 seconds