Spelling suggestions: "subject:"crystallin"" "subject:"crystalline""
21 |
Stable Isotopes in the Eye Lenses of Doryteuthis plei: Exploring Natal Origins and Migratory Patterns in the Eastern Gulf of MexicoMeath, Brenna A. 19 October 2017 (has links)
Stable isotope analysis is an emerging tool to examine trophic pathways and migratory patterns of marine organisms. Squid are widely distributed in coastal and deep water regions of the Gulf of Mexico. Stable isotope ratios of carbon and nitrogen found within cephalopod tissues can provide information on both trophic level and habitat of their food sources. More recently, ontogenetic changes in stable isotope ratios within squid eye lenses have been documented. Concentric layers of crystallin proteins are added to the lens as the squid ages; the center of the lens contains the oldest layer and the youngest layers are on the outermost surface. The crystallin proteins are rich in carbon and nitrogen, providing suitable sources for isotopic analysis of both δ15N and δ13C. Doryteuthis plei is a common inshore squid in coastal waters of the western Atlantic region. This study identifies the geographic movements of D. plei in the eastern Gulf of Mexico using changes in isotope ratios in eye-lens layers. Isotopic analyses suggest that these squid begin their lives in the deep chlorophyll maximum of the outer shelf and move inshore as they age.
|
22 |
Understanding Ultrafast Hydration Dynamics under Crowding Condition and Tryptophan Fluorescence Quenching Mechanism in Gamma-M7 CrystallinYang, Yushan January 2021 (has links)
No description available.
|
23 |
Investigating Structural Proteins by Light ScatteringNudurupati, Uma 02 April 2021 (has links) (PDF)
This thesis evaluates the organization of the structural proteins, Human Gamma D crystallin and Collagen type II, into higher-order structures using light scattering. Specifically, it evaluates the natures of incipient aggregation in Human Gamma D crystallin and the nature of its interactions with CAPEGn, an electrostatic blocker. Additionally, this thesis evaluates whether Collagen type II growth kinetics follows Classical nucleation theory.
|
24 |
Rôle de la petite protéine de choc thermique alphaB crystallin dans la fibrogénèse pulmonaire et son implication dans la voie de signalisation du transforming growth factor - béta1 / Role of the small heat shock protein alphaB-crystallin in pulmonary fibrosis and its implication in the signaling pathway of the Transforming Growth Factor béta1Bellaye, Pierre-Simon 15 November 2013 (has links)
La fibrose pulmonaire idiopathique (FPI) est de pronostic sombre et sans traitement efficace. Elle est caractérisée par un début sous pleural et la présence de myofibroblastes responsables de la synthèse excessive de la matrice extracellulaire. La voie de signalisation du Transforming Growth Factor (TGF)-β1, facteur clé de la genèse de la fibrose et sa progression, passe par les Smads, notamment Smad4. Le TGF-β1 induit la différenciation des fibroblastes pulmonaires et des cellules épithéliales et mésothéliales en myofibroblastes. AB-crystallin est une protéine de choc thermique surexprimée dans la fibrose du foie, du rein et la fibrose vasculaire. Elle peut être induite par le TGF-β1. Dans ce travail, nous avons étudié le rôle d’αB-crystallin dans la fibrose pleurale et pulmonaire. Nous montrons qu’αB-crystallin est surexprimée dans les poumons et la plèvre de patients atteints de FPI. In vivo, dans trois modèles de fibrose pulmonaire (bléomycine, surexpression de TGF-β1 ou d’IL-1β) les souris KO pour αB-crystallin sont protégées de la fibrose avec une inhibition de la voie du TGF-β. In vitro, dans les cellules épithéliales, mésothéliales ou les fibroblastes, αB-crystallin augmente la localisation nucléaire de Smad4. En interagissant avec TIF1γ, responsable de l’export nucléaire de Smad4, elle favorise la séquestration nucléaire de Smad4 et son activité pro-fibrosante. Au contraire, son inhibition permet la formation du complexe Smad4/TIF1γ et l’export nucléaire de Smad4 inhibant son activité. Ce travail montre l’importance d’αB-crystallin dans la fibrose pleuro-pulmonaire et son rôle sur la voie du TGF-. AB-crystallin pourrait être une cible thérapeutique de la FPI. / Idiopathic pulmonary fibrosis (IPF) has no effective current treatment. It is characterized by a sub-pleural onset and the presence of myofibroblasts, responsible for the excessive extracellular matrix synthesis. Transforming Growth Factor (TGF)-β1 is considered as the major profibrotic cytokine. Its signaling pathway occurs through the Smads proteins, including Smad4. TGF-β1 allows the differentiation of lung fibroblasts and epithelial and mesothelial cells into myofibroblasts. AB-crystallin is a small heat shock protein overexpressed in liver, renal and vascular fibrosis and can be induced by TGF-β1. In this study, we assessed the role of αB-crystallin in pleural and pulmonary fibrosis. We show that αB-crystallin is overexpressed in the lung and the pleura of IPF patients. In vivo, in three pulmonary fibrosis models (bleomycin, TGF-β1 or IL-1β overexpression) αB-crystallin KO mice are protected from fibrosis with an inhibition of the TGF-β pathway. In vitro, in epithelial and mesothelial cells or fibroblasts, αB-crystallin increases Smad4 nuclear localization. Interacting with TIF1γ, responsible for the nuclear export of Smad4, it promotes the nuclear sequestration of Smad4 and thus its profibrotic activity. Instead, αB-crystallin inhibition allows the formation of the Smad4/TIF1γ complex and promotes Smad4 nuclear export an profibrotic activity. This work shows the importance of αB-crystallin in pleuro-pulmonary fibrosis and its role on the TGF-β1 pathway. AB-crystallin appears as a putative therapeutic target for IPF.
|
25 |
Distribution of αB-Crystallin in the Central Retina and Optic Nerve Head of Different Mammals and its Changes during Outer and Inner Retinal DegenerationMay, Christian Albrecht 11 July 2014 (has links)
Purpose: To investigate species differences in the distribution and localization of alpha B-crystallin (ABC) in the normal retina and optic nerve head region, and to describe changes during outer and inner retina degeneration.
Material and methods: Animals studied included mice, rats, cats, pigs, cows, and monkeys. Sections of the optic nerve and central retina were labeled with antibodies against ABC and glial fibrillary acidic protein (GFAP).
Results: ABC was located in astrocytes and Muller cells with different intensities. During outer retina degeneration (dystrophic rat and Abyssinian cat), only late stages showed an increase in ABC in the retina and optic nerve head. Inner retina degeneration in the glaucoma mouse model showed no increase of ABC. In the monkey glaucoma model, only the innermost layer of the optic nerve head showed increased labeling for ABC.
Conclusions: The distribution of ABC is species dependent and is (excluding the mouse) present in the nerve fiber layer of the retina and in the optic nerve head (localization of astrocytes). Chronic retinal degeneration does not necessarily lead to an over-expression of ABC. While in outer retinal degeneration induction was predominantly present in late stages, pressure-induced glaucoma led to a specific increase in ABC already in early stages indicating a local stress-response in this region.
|
26 |
The Human Endometrium : Studies on Angiogenesis and EndometriosisMoberg, Christian January 2017 (has links)
Angiogenesis is thought to play a pivotal role in the cycling endometrium. Coordinated by oestrogen and progesterone, endometrial blood vessel development is primarily mediated by vascular endothelial growth factor-A (VEGF-A), which promotes endothelial cell (EC) proliferation and protects ECs from induced apoptosis. Studying changes at transcript level in human endometrial endothelial cells (HEECs) in response to mitogenic and inhibitory stimuli is one way towards understanding the regulation of physiological endometrial angiogenesis. Endometriosis, the presence of endometrial-like tissue outside the uterine cavity, is a common gynaecological disorder in women of reproductive age, often causing pelvic pain and reduced fertility. Chronic inflammation in the peritoneal environment and defective endometrial protein expression are some of the contributors to the complex pathophysiology of endometriosis. The aim of this work was to study the changes in the transcriptome induced by VEGF-A and partial serum deprivation in primary HEECs, and to investigate biochemical factors associated with subfertility and chronic pelvic pain in endometriosis patients. Exposing primary HEECs to VEGF-A, and serum withdrawal was found to regulate transcripts associated with survival, migration, apoptosis and progression through the cell cycle, when assessed using microarray technology and bioinformatic tools. A subset of 88 transcripts was reciprocally regulated under the two experimental conditions; thus probably important in HEEC biology. Higher endometrial epithelial staining scores of oestrogen receptor-α and reduced staining of progesterone receptors were seen in subfertile endometriosis patients. Lower levels of the receptivity biomarker leukaemia inhibitory factor (LIF) and its receptor, as well as signs of dysregulated αB-crystallin expression and increased peritoneal fluid concentrations of interleukin (IL)-1α and IL-6 were associated with reduced pregnancy rates. Endometriosis patients with chronic pelvic pain had higher levels of vasoactive intestinal peptide (VIP) in eutopic endometria and in endometriotic lesions compared with patients without chronic pain. The presence of chronic pelvic pain was also associated with increased concentrations of VIP and IL-6 in peritoneal fluid. The present results may constitute a basis for further investigation of regulatory pathways in endometrial angiogenesis as well as for studies of endometrial receptivity and pain in women with endometriosis.
|
27 |
Effect of divalent cations and solubilizers in apoferritin and gamma D-crystallin solutions: nucleation, crystallization and light scattering studiesNwanosike, Quinta M. 10 November 2009 (has links)
Crystallization of proteins in the human body can lead to the development of diseases such as sickle cell anemia and cataract. Understanding protein crystallization can give insight into such diseases. Furthermore, protein crystallization is necessary for protein structure resolution. This is important since resolution of protein structure is the first step towards establishing structure/function relations, and possibly towards performing specific structural modifications that may change the function in desirable directions. Another important application of protein crystallization is in downstream processing in the pharmaceutical industry where it is used for separation and as a final purification step. The present study increases knowledge of interactions between protein molecules during crystallization and hence the crystallization process.
Crystallization of proteins in the human body can lead to the development of diseases such as sickle cell anemia and cataract. Understanding the processes involved in protein crystallization can help us gain a better understanding of such diseases. Crystallization of human gamma D-crystallin (HGD) and apoferritin, two proteins found in the lens, was studied in relation to cataract formation. Crystallization of both proteins was studied in the presence of divalent cations which are found at elevated concentrations in cataractous lenses. Results indicate that the divalent cations studied enhance crystallization of these proteins.
A thermodynamic property, the osmotic second virial coefficient, was measured in protein solutions and its value was correlated with the occurrence of crystallization. It was found that the second virial coefficient successfully predicted crystallization of both proteins. A new method was developed for indirect measurement of the second virial coefficient using dynamic light scattering. This new method is more robust and efficient than the traditional static light scattering method.
Finally the ability of solubilizers to prevent crystallization in HGD solutions was studied. A commercial solubilizer, NDSB-201, was found to increase the energy barrier to nucleation. Although this did not prevent crystallization, it resulted in fewer and smaller crystals being obtained. The naturally occurring alpha A-crystallin was a superior solubilizer to NDSB-201, as it suppressed aggregation and prevented crystallization of HGD under conditions for which NDSB-201 did not. The findings in the present study provide insight into the processes by which protein crystallization occurs and hence into diseases associated with protein crystallization.
The findings in the present study provide insight into the processes by which protein crystallization occurs. Using the second virial coefficient to assess whether a protein will crystallize out of solution, approaches for retardation and prevention of protein crystallization, and implications for future research, are discussed.
|
28 |
Molecular Regulation of Inflammation and Angiogenesis in the Tumor MicroenvironmentDieterich, Lothar January 2011 (has links)
Tumor growth and progression not only depend on properties of the malignant cells but are strongly influenced by the tumor microenvironment. The tumor stroma consists of various cell types such as inflammatory cells, endothelial cells and fibroblasts, which can either inhibit or promote tumor growth. Consequently, therapeutic targeting of the tumor stroma is increasingly recognized as an important tool to fight cancer. Two particularly important processes that contribute to the pathology of most types of tumors are angiogenesis and inflammation. In order to target these processes specifically and efficiently, it is fundamental to identify and understand the factors and signaling pathways involved. This thesis initially describes the multiple functions of the small heat shock protein αB-crystallin in the tumor microenvironment. αB-crystallin was first identified in a screen of proteins specifically up-regulated in endothelial cells forming vessel-like structures. We found that αB-crystallin is expressed in a subset of tumor vessels and promotes angiogenesis by inhibiting endothelial apoptosis, suggesting that targeting of αB-crystallin might inhibit angiogenesis and thereby decrease tumor growth. However, we also discovered an important role of αB-crystallin in regulation of inflammatory processes. We show that αB-crystallin increases the surface levels of E-selectin, an important leukocyte-endothelial adhesion molecule. Thereby, αB-crystallin may alter leukocyte recruitment to inflamed tissues such as the tumor stroma. In addition, we found that αB-crystallin is expressed in immature myeloid cells that accumulate in the periphery and at the tumor site during tumor development. Importantly, lack of αB-crystallin resulted in increased accumulation of immature myeloid cells, which might increase tumor associated inflammation. Finally, through combining laser microdissection of vessels from human tissue and microarray analysis, we identified a gene expression signature specifically associated with vessels in high grade glioma. Blood vessels in malignant glioma are highly abnormal and contribute to the pathology of the disease. Thus, knowledge about the molecular set-up of these vessels might contribute to the development of future vascular normalizing treatments.
|
29 |
Fibrogenèse pulmonaire induite par la toxicité de la bléomycine et son point de départ sous-pleural / Bleomycin induced pulmonary toxicity and its subpleural onsetBurgy, Olivier 13 December 2016 (has links)
La fibrose pulmonaire (FP) idiopathique est une maladie sans traitement efficace caractérisée par une prolifération de myofibroblastes et par un départ sous-pleural suggérant un rôle de la plèvre. Le transforming growth factor (TGF)-ß1 induit un processus de transformation des cellules mésothéliales pleurales (CMP) en cellules de type myofibroblaste. Les protéines de choc thermique régulent la voie du TGF-ß1. L’importance de l’axe caspase-1/IL-1ß, a été décrite dans les modèles animaux de FP.La protéine de stress AlphaB-crystallin a été étudiée dans la FP au niveau des CMP et l’importance de l’axe caspase-1/IL-1ß a été recherchée au niveau des cellules structurales pulmonaires dans la toxicité de la bléomycine (BLM).aB-crystallin est surexprimée dans la FP idiopathique au niveau des CMP. Son inhibition empêche la transformation et la migration des CMP dans la fibrose pleuro-pulmonaire. Dans un modèle de FP induite par la BLM chez la souris, la voie caspase-1 est activée dans les régions pleurales. In vitro, la caspase-1 a un rôle crucial dans la transformation des CMP. Son activation induit une réaction fibrosante chez la souris. Dans une seconde partie, nous montrons qu’une forme déglycosylée de la BLM, incapable d’activer la caspase-1, n’induit pas de FP mais a une activité anti-cancéreuse. La déglyco-BLM n’entraine pas la pyroptose, mort caspase-1 dépendante, chez les cellules épithéliales alvéolaires. Nos résultats suggèrent qu’AlphaB-crystallin et la voie caspase-1/IL-1ß pourraient être des cibles thérapeutiques dans la FP idiopathique ou induite par la BLM. Nous apportons aussi une preuve de concept de l’utilisation de la déglyco-BLM comme alternative non toxique à la bléomycine. / Idiopathic Pulmonary Fibrosis (PF) is a rare and devastating disease without efficient treatment at this time. Idiopathic FP is characterized by accumulation of myofibroblasts and has a typical sub-pleural onset suggesting a role of the pleura in the disease. Transforming Growth Factor (TGF)-ß1 induces transformation of pleural mesothelial cells (PMC) into active cells exhibiting myofibroblast phenotype. Heat shock proteins can act as regulator of the TGF-ß1 signaling. A role for caspase-1/IL-1ß axis has already been described in animal models of PF.The heat shock protein AlphaB-crystallin has been studied in PF at the PMC level and the importance of caspase-1/IL-1ß axis has been investigated specifically in lung structural cells in the context of bleomycin (BLM) toxicity.AlphaB-crystallin is overexpressed by PMC during idiopathic PF. Its inhibition in mice interferes with PMC transformation and subsequent migration in pleuro-pulmonary fibrosis. In BLM-induced PF in mice, caspase-1 is activated in sub-pleural areas. In vitro, caspase-1 has a crucial role in the transformation process of PMC. Activation of caspase-1 triggers fibrotic response in mice. In a second part, we show that a deglycosylated form of BLM, which failed to promote caspase-1 activation, is unable to trigger PF but stills have an anti-tumor activity. Deglyco-BLM does not induce pyroptosis, a caspase-1 dependent cell death, in alveolar epithelial cells.Our data suggest that AlphaB-crystallin and caspase-1/IL-1ß could represent interesting therapeutic targets in idiopathic as well as BLM-induced PF. We also bring a proof of concept for the use of deglyco-BLM as a less toxic alternative to BLM in cancer therapy.
|
30 |
Diffusion and Flow on Microscopic Length Scales Studied with Fluorescence Correlation Spectroscopy / Diffusion und Fluss auf mikroskopischen Längenskalen untersucht mit FluoreszenzkorrelationsspektroskopiePieper, Christoph Michael 23 October 2012 (has links)
No description available.
|
Page generated in 0.052 seconds