261 |
Processing of Nanostructured WC-Co Powders and Sintered SteelsZhang, Zongyin January 2003 (has links)
Processing of nanostructured WC-Co and W-Co powders,modelling of Fe-Mn-Si alloy, swelling of Fe-Cu alloy, andmechanical properties and sintering of Fe-Mn-Si steels havebeen studied in the present thesis. W-Co precursors made by chemical synthesis were used toproduce nanostructured WCCo and W-Co powders by calcination,reduction and carburization. The phase constituents in thecalcined powders depend on temperature and atmospheres. Cobaltcan accelerate the reduction rate of the W-Co precursors as acatalyst, and cobalt influences the formation of intermediatephases during the reduction of the precursors. The ratio of carbon monoxide to carbon dioxide controlscarburization process, gives different intermediate phases andcarburization rates. There exist several intermediate phases: W6Co6C, W3Co3C, W2C due to varying carbon monoxide content in thecarburization gases. Nanostructured WC-Co powders with aparticle size of 20-50 nm have been obtained. The effect of silicon content on the particle sizedistribution of milled Fe-Mn-Si master alloy powders is muchmore significant than that of manganese content. A finer finalparticle size can be obtained in the alloy powders with highersilicon compositions. Long time milling results in theagglomeration of small particles. The grinding process can bedescribed using classic batch grinding equation based on thepopulation balance model. A swelling model for Fe-Cu alloyssintered at the temperatures above the melting point of copperhas been established based on the penetration mechanism. In themodel, the particle coordination number and heating rate wereused to express the porosity and the thickness of the diffusionlayers between iron and copper particles respectively. The effects of sintering temperature and time on theproperties of sintered steels have been studied. Fe-Mn-Simaster alloys made by cast-milling, atomizing, and acombination of atomization and milling have been covered. Themilled, and atomizationmilled alloy steels showed goodmechanical properties with small dimensional change. Transientliquid phase of the Fe-Mn-Si alloys accelerates densification,and offer fast diffusion of alloying elements. The addition ofa small amount of Fe-Mn-Si master alloy to Astaloy 85Mo powdercan lead to high strength with zero dimensional change. <b>Key words:</b>Processing; Modelling; Nanostructured powder;WC-Co; W-Co; Calcination; Reduction; Carburization; Particlesize; Sintered steel; Fe-Cu alloy; Swelling; Fe-Mn-Si masteralloy; Mechanical properties; Sintering parameters.
|
262 |
Development Of New Lead-free Solders For Electronics IndustryKantarcioglu, Anil 01 December 2012 (has links) (PDF)
Joining of electronic components onto the circuit boards is done by soldering operation, during production of all electronic devices. In many countries, including Turkey, traditionally used tin-lead (Sn-Pb) solder alloys have been restricted to be used in consumer electronics appliances because of the toxic effects of lead (Pb) within these alloys. Tin-silver-copper (Sn-Ag-Cu) based alloys have been developed as the most promising candidate that can replace the Sn-Pb alloys. However, various problems have emerged with the increasing trend in use of Sn-Ag-Cu solder alloys in electronics industry, namely large intermetallic compound formation, low wettability and thermal shock resistance. Many researches have been done in the past decade to overcome these problems. The solutions are based on changing the undercooling of the solder alloy / which was determined to be done by either changing the composition of the solder alloy by micro-alloying or changing the cooling rate during soldering operation. In this thesis study Sn-3.5Ag-0.9Cu (wt. %) lead-free solder having the eutectic composition, was micro-alloyed with additions of aluminum (Al), iron (Fe) and titanium (Ti).
Experimental results were compared with commercially available near-eutectic Sn-40Pb (wt. %) solder, a commercially available Sn-3.0Ag-0.5Cu (wt. %) solder and also eutectic Sn-3.5Ag.0.9Cu (wt. %) and near-eutectic Sn-3.7Ag-0.9Cu (wt. %) solders that were produced for this thesis study. In the first stage of the study, the effects of 0.05 wt. % of Al, Fe and Ti micro-alloying were investigated. When preliminary results of mechanical and thermal test were compared, Fe was found to make positive effect on shear strength and undercooling. Further research was carried out to establish a relationship between the Fe compositions and solder properties. Therefore, 0.01, 0.03, 0.07 and 0.1 wt. % Fe additions were also studied and results were reported. 0.01 wt. % and 0.07 wt. % Fe added solders were found to have a smaller undercooling, resulting with dispersed intermetallic compound (IMC) and thus has highest shear strength. Different cooling rates / 0.017, 0.17 and 1.7 ° / C/sec were applied to solder-copper joints and microstructures were investigated. Large IMC-free microstructure was achieved by 0.01 wt. % Fe micro-alloyed solder, which was cooled with 1.7 ° / C/sec rate. Wetting of copper substrate was found to be improved by additions of Al, Fe and Ti compared to alloy with eutectic composition of Sn-Ag-Cu alloy.
Selected SAC+X alloys have been subjected to thermal shock experiments for crack formation analysis on the copper substrate-solder joints. The results showed that SAC+0.05Al solder has the higher thermal shock resistance, which no cracks were observed after 1500 cycles of thermal shock. In order to understand the insights of SAC performance, some of the lead-free solders were applied onto printed circuit boards for thermal shock resistance test. These results have indicate that the cracking may occur after thermal shock cycles due to process conditions of soldering operation (i.e. cooing rate), independent of the solder alloy composition.
|
263 |
Recycling Cu from Cu-sludge Generated in PCB Industry and Manufacturing Nanoscale Ferrite Catalyst to Catalyze VOCsTu, Yao-jen 05 September 2007 (has links)
Printed Circuit Board (PCB) industry is one of the two major Integrated Circuit (IC) part manufacturing industries in Taiwan, but it derives many environmental problems because large amount of chemicals and special materials are used in its process, especially copper sludge generated from wastewater treatment. Although the heavy metal sludge can be treated by solidification, heavy metals contained in the sludge may still be leached out due to longtime exposure to acid rain. Therefore, there are urgent needs of research and development of technologies regarding how to reduce both quantity and volume of the hazardous heavy metal sludge and how to recycle the valuable heavy metals.
Acid leaching method, chemical exchange method and ferrite process are applied to study how to recycle and stabilize copper sludge of PCB industry. The ultimate goal is to achieve cleaning production and sustainable development by transforming the hazardous waste into valuable byproducts, reducing the amount of the waste and lowering the treatment costs.
Experimental results show that a method is successfully developed to recycle copper from the sludge generated by PCB industry by using the combination of acid leaching, chemical exchange and ferrite process. Via this method, not only is pure copper powder recycled, but highly valuable nano-scaled catalyst-CuFe2O4 is also produced. Hence, the problem that copper sludge has nowhere to go is solved, as well as the high cost of catalyst in catalytic incineration is reduced to nearly zero. The achievements of this study are summarized as follow:
(1) Characteristic analysis of industrial sludge
Water content and pH of the sludge is 60% and 7.05, respectively. The drop in quantity of ignition is 23%. The screening test results show that particle size of the sludge varies from 0.4 £gm to 200 £gm, with D50 of 25.0 £gm. Cu, Pb, Cd, Zn, Ni and Cr are found in the sludge, and the biggest part of heavy metals is Cu, with a concentration of 158,000 mg/kg (dry basis), whereas the other heavy metals are all below 105 mg/kg (dry basis).
(2) Study of recycling of pure copper powder
The optimal operational condition of acid leaching method is that concentration of sulfuric acid is 2.0 N, temperature is 50¢J and treatment time is 60 minutes. Under this operational condition, more than 99% of heavy metals can be extracted to liquid phase and the sediment of treated sludge meet Toxicity Characteristic Leaching Procedure (TCLP) standards and therefore is considered as general industrial waste. The optimal operational condition of chemical exchange method is that molar ratio of Fe/Cu is 5.0, pH is 2.0 and treatment temperature is 50¢J. Under this operational condition, more than 95.0% of Cu can be recovered. The optimal operational condition of ferrite process is that Fe/Cu=10.0, pH=9.0, treatment temperature=80¢J, aeration rate=3 L/min/per liter waste liquid and reaction time = 30 min. Under this operational condition, TCLP concentrations of all heavy metals of both supernatant and sludge are well below regulatory standards, which proves that ferrite process is very effective.
(3) Resourcing of spinel sludge
In the potential of catalytic incineration of volatile organic compounds test, the sludge generated from ferrite process is used to catalyze the isopropyl alcohol (IPA). The catalyst is replaced by the same volume of glass wool on a reactive bed as a blank. Experimental result shows that the conversion of IPA is only 10% at 200¢J and 75% at 500¢J in the absence of catalyst under the conditions that IPA inlet concentration=1,700 ppm, space velocity=24,000 hr-1, O2 concentration=21%, and relative humidity=19%, which indicates that the destruction of IPA is associated with the consumption of much energy when no catalyst was used. But when ferrite catalyst is applied, IPA is decomposed completely at 200¢J, showing that the sludge has great potential of catalyst.
(4) Synthesizing five VOCs catalyzing ferrite catalysts via ferrite process
As to the synthesis of five ferrite catalysts in the laboratory, IPA conversion rate is higher than 58% at 200¢J. The sequence of IPA conversion from good to bad is Cu-ferrite catalyst > Mn-ferrite catalyst > Ni-ferrite catalyst > Zn-ferrite catalyst > Cr-ferrite catalyst, where Cu/Fe is most efficiency, with IPA conversion rate of 75% at 150¢J and 100% at 200¢J.
|
264 |
Design and Stability of Cu(In,Ga)Se2-Based Solar Cell ModulesWennerberg, Johan January 2002 (has links)
Cu(In,Ga)Se2 (CIGS) is one of the most promising semiconductor compounds for large-scale production of efficient, low-cost thin film solar cells, and several research institutes have announced their plans for CIGS production lines. But for the CIGS technology to become a commercial success, a number of issues concerning manufacturability, product definition, and long-term stability require further attention. Several studies indicate that CIGS-based modules are stable over many years in field operation. At the same time, it is shown in the present work that they may have difficulties in passing standard accelerated lifetime test procedures like the IEC 1646 damp heat test. In particular, CIGS modules are sensitive to humidity penetrating through the module encapsulation, which will increase the resistive losses in the front contact and cause severe corrosion of the back contact. It is also shown that cells experience degradation in both voltage and fill factor, and the causes of these effects are addressed. By concentrating the light falling onto a solar cell, the device will deliver a higher power output per illuminated absorber area, which can lower the electricity production costs. For CIGS-based solar cells, low-concentrated illumination could be an economically viable approach. In this work it is shown that the yearly performance of a photovoltaic system with CIGS modules can be significantly improved at a moderate cost by using parabolic aluminum mirrors as concentrating elements. However, in order to avoid detrimental power losses due to high temperatures and current densities, the modules need to be designed for the higher light intensity and to be sufficiently cooled during operation. A design where the front contact of the module is assisted by a metal grid has shown promising results, not only for concentrated illumination but also for normal operation. The benefits are enhanced window processing tolerance and throughput, as well as improved degrees of freedom of the module geometry.
|
265 |
Development of Spatially-Resolved FTIR – Gas Concentration Measurements inside a Monolith-Supported Selective Catalytic Reduction CatalystHou, Xuxian 04 June 2013 (has links)
The diesel engine is growing in popularity due to its energy efficiency and solving the emissions issues associated with diesel engine exhaust would clear the way for further growth. The key pollutants are NOx, particulate matter and unburned hydrocarbons. Selective catalytic reduction (SCR) catalysis is likely the best choice for NOx control. In SCR, NH3 selectively reacts with NOx to form N2 – the selectivity refers to NH3 reacting with NOx instead of the abundant O2. Urea is used as the NH3 source, being injected into the exhaust as an aqueous solution where the urea decomposes and NH3 is generated.
Spatial resolution characterization techniques have been gaining attention in the catalysis field because of the higher level of information provided. In this thesis, a new spatial resolution technique, called SpaciFTIR (spatially-resolved, capillary-inlet Fourier transform infra-red spectroscopy), was developed, which overcomes the interference of water in the detection of NH3 in an earlier developed technique, SpaciMS (spatially-resolved, capillary-inlet mass spectrometry). With the new test method, three SCR topics were addressed.
First, the three key SCR reactions were spatially resolved. These are the standard SCR reaction (2NO + 2NH3 + 1/2O2 = 2N2 + 3H2O), the fast SCR reaction (NO + NO2 + 2NH3 = 2N2 + 3H2O), and NO2-SCR, (6NO2 + 8NH3 = 7N2 + 12H2O). Results show that in the presence of NO2, but at a NO2/NOx ratio < 0.5, the fast SCR reaction proceeds followed by the standard SCR reaction, i.e. in series. If the NO2/NOx ratio exceeds 0.5, the NO2-SCR and fast SCR reactions occur in parallel. Compared to the standard integral test method, this spatial resolution technique clearly showed such trends. Secondly, the spatial resolution technique was used to characterize the effects of thermal aging on catalyst performance. It was found that for a highly aged catalyst, there was a radial activity profile due to an inhomogeneous temperature distribution in the process of aging. Aging effects on various key SCR reactions, i.e. NO oxidation, NH3 oxidation, and the reduction reactions, were studied. Last but not least, for the purpose of passive SCR system development, transient NH3 storage profiles along the monolith channel were measured with SpaciFTIR. Passive SCR is a system where the NH3 is generated on an upstream catalyst, such as a three-way catalyst or lean-NOx trap, instead of via urea injection. In such a system, NH3 is therefore not constantly being fed to the SCR catalyst, but “arrives” in pulses. Factors such temperature, NH3 concentration, pulsing time, flow rate and thermal aging were investigated. For the first time, NH3 migration was observed and its effect on SCR reactions along the length of catalyst was studied.
|
266 |
Couplage galvanique Cu-Al en milieu confinéJoma, Sameer 04 March 2013 (has links) (PDF)
Les alliages aluminium-cuivre, et en particulier l'alliage 2024 (4% de Cu) sont utilisés dans l'industrie aéronautique pour leur faible densité alliée à de très bonnes propriétés mécaniques. Néanmoins, ces alliages sont très sensibles à la corrosion. Ainsi dans le cas de l'alliage 2024, la présence de précipités riches en cuivre, noyés dans une matrice d'aluminium, soumet cet alliage à un risque de corrosion galvanique. Dans une solution en plein bain contenant un électrolyte aéré de pH neutre, le couplage galvanique entre les deux métaux se produit comme prévu : la dissolution d'aluminium est la réaction anodique et la réduction de l'oxygène est la réaction cathodique à la surface du cuivre. La formation d'une crevasse à l'interface Al / Cu, avec re-déposition de cuivre dans le voisinage de l'interface a souvent été observée, mais n'a jamais été clairement expliquée. Ainsi, le but de ce travail est de mettre en évidence le mécanisme de dissolution du cuivre et de voir l'influence du confinement sur ce comportement. Un montage en couche mince a été mis au point au laboratoire, permettant d'obtenir une couche d'électrolyte (d'épaisseur inférieure à quelques centaines de micromètres) entre deux plans parallèles contenant respectivement des électrodes en cuivre pur et en aluminium pur. Le courant et le potentiel galvaniques ont été suivis en fonction du temps, de la distance entre les deux métaux, ainsi que du rapport des surfaces variant entre 10 et 0,1 entre le cuivre et l'aluminium. Après le remplacement de l'électrode supérieure par une paroi isolante, le comportement de l'électrode de cuivre a été suivi en présence d'ions Al3+ dans la couche mince. Enfin, le mécanisme de couplage galvanique est discuté en tenant compte de la modification du pH au sein de la couche mince d'électrolyte.
|
267 |
Ore Petrology and Alteration of the West Ansil Volcanic-hosted Massive Sulphide Deposit of the Noranda Mining Camp, Rouyn-Noranda, QuebecBoucher, Stéphanie 18 February 2011 (has links)
The West Ansil deposit was the first Cu discovery in 25 years in the Noranda Central Camp. It has a combined indicated and inferred resource of ~1.2 Mt. Grades for the indicated resource are 3.4% Cu, 0.4% Zn, 1.4 g/t Au and 9.2 g/t Ag. The bulk of the resource is located in three massive sulphide lenses (Upper, Middle and Lower) that are entirely within the Rusty Ridge Formation above the Lewis exhalite. The mineralization in all three ore lenses consists of massive pyrrhotite + chalcopyrite + magnetite. Semi-massive sphalerite is restricted to the upper and lower parts of the Middle lens. Massive magnetite occurs at the center of the Upper and Middle lenses, where it replaces massive pyrrhotite. A striking feature of West Ansil is the presence of abundant colloform and nodular pyrite (+marcasite) in the massive sulphides. Late-stage replacement of massive pyrrhotite by colloform pyrite and marcasite, occurs mostly along the upper and lower contacts of the lenses.
|
268 |
Evaporative heat and mass transfer with solubility driven solidification of aqueous droplet flowsBahadorani, Payam 01 March 2009 (has links)
Nuclear-based hydrogen production via thermochemical water decomposition using a copper-chlorine cycle consists of a series of chemical reactions that split water into hydrogen and oxygen. This is accomplished through reactions involving intermediate copper and chlorine compounds, which act as catalysts that are recycled in the process. In this thesis, analytical and numerical solutions are developed to predict the behaviour of aqueous cupric chloride droplets in a solution undergoing spray-drying in the Cu-Cl cycle. The aqueous CuCl2 is present as a slurry within the cycle, which will later generate oxygen and hydrogen as a net result. The efficiency of the cycle can be increased by utilizing low-grade waste heat from any industrial source or nuclear power plant to assist in the drying process. There are many different methods employed in industry for drying of solutions. Each method has its own advantages and disadvantages, depending on the application and conditions. In this thesis, analytical correlations of heat and mass transfer are developed for the aqueous solution, subject to various drying conditions. The analysis is performed for moist air in contact with a sprayed aqueous solution of CuCl2(2H2O). Validation of the model is performed by comparisons with experimental results obtained from a Niro-spray dryer for CuCl2 and previous experimental and theoretical data for different fluids, on the basis of non-dimensional analysis. / UOIT
|
269 |
Dynamic flowgraph methodology for reliability modelling of networked control systems: with application to a nuclear-based hydrogen production plantAl-Dabbagh, Ahmad Wail 01 December 2009 (has links)
The use of communication networks in digital control systems introduces stability and reliability concerns. Standard reliability and safety assessment methods need further modification to accommodate the issue in the reliability assessment of networked control systems. In this thesis, it is demonstrated that the Dynamic Flowgraph Methodology (DFM) can be extended to model networked control systems. The modelling of the communication network influence on the performance of the control system is presented. The areas that can affect the reliability of the control system are identified using the methodology. The thesis also presents the application of the DFM to a nuclear-based thermochemical water splitting process for hydrogen production, the Copper-Chlorine (Cu-Cl) cycle. The architecture of a networked control system and configuration of instrumentation and control systems for the hydrogen production plant are proposed in the thesis. / UOIT
|
270 |
Characterization of the Cu-Si System and Utilization of Metallurgical Techniques in Silicon Refining for Solar Cell ApplicationsMitrasinovic, Aleksandar 17 February 2011 (has links)
Two methods for refining metallurgical grade silicon to solar grade silicon have been investigated. The first method involved the reduction of impurities from metallurgical grade silicon by high temperature vacuum refining. The concentrations of analyzed elements were reduced several times. The main steps in the second refining method include alloying with copper, solidification, grinding and heavy media separation. A metallographic study of the Si-Cu alloy showed the presence of only two microconstituents, mainly pure silicon dendrites and the Cu3Si intermetallic. SEM analysis showed a distinct boundary between the silicon and the Cu3Si phases, with a large concentration of microcracks along the boundary, which allowed for efficient separation. After alloying and grinding, a heavy media liquid was used to separate the light silicon phase from the heavier Cu3Si phase. Cu3Si residues together with the remaining impurities were found to be located at the surface of the pure silicon particles, and should be efficiently removed by acid leaching. Thirty elements were analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP) chemical analysis technique. ICP revealed a several times higher impurity level in the Cu3Si intermetallic than in the pure silicon; furthermore, the amounts of 22 elements in the refined silicon were reduced below the detection limit where the concentrations of 7 elements were below 1ppmw and 6 elements were below 2ppmw. The results showed that the suggested method is efficient in removing impurities from metallurgical grade silicon with great potential for further development.
|
Page generated in 0.0609 seconds