• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 105
  • 78
  • 44
  • 41
  • 32
  • 16
  • 12
  • 11
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 684
  • 101
  • 91
  • 90
  • 89
  • 78
  • 70
  • 70
  • 64
  • 51
  • 51
  • 48
  • 44
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Synthesis and Impurity Study of High Performance LiNixMnyCozO2 Cathode Materials from Lithium Ion Battery Recovery Stream

Sa, Qina 09 September 2015 (has links)
"A ¡°mixed cathodes¡± LIB recycling process was first proposed and developed in the CR3 center at Worcester Polytechnic Institute. This process can efficiently and economically recover all the valuable metal elements in LIB waste. In the end of the recovery process, lithium, nickel, manganese, and cobalt ions will be recovered in the leaching solution. The objective of this work is to utilize the leaching solution to synthesis NixMnyCoz(OH)2 precursors and their corresponding LiNixMnyCozO2 cathode materials. The synthesized cathode materials can be used to build new LIBs, allowing the overall process to be a ¡°closed loop¡±. "
82

Synthesis and thermoelectric properties of Cu-Sb-S compounds

Chen, Kan January 2016 (has links)
The Cu-Sb-S compounds (Cu12Sb4S13, CuSbS2, Cu3SbS3 and Cu3SbS4) have the advantages of earth-abundance, low-toxicity and low-cost, compared with conventional thermoelectric materials. This work provides a comprehensive study on the synthesis methods, crystal structures and thermoelectric properties of Cu-Sb-S compounds. All of the samples were prepared by mechanical alloying combined with SPS, which had high density, high purity and very fine microstructure. The lone-pair electrons of Sb and the [CuS3] plane play important roles in realizing very low lattice thermal conductivity of these compounds. Except for Cu12Sb4S13, which is known as a good thermoelectric material, the other three compounds showed very poor thermoelectric performance due to their high electrical resistivities. A phase transition at 398 K was found in Cu3SbS3, which makes it unsuitable for applications and attempts to optimize electrical properties of CuSbS2 failed. Different p-type dopants were studied to improve the electrical properties of Cu3SbS4. Both Ge-doping and Sn-doping on Sb sites increased the carrier concentration of Cu3SbS4 significantly. The electrical transport properties were analyzed using SPB model, and a large effective mass of 3.0 me was found for all of the samples. A maximum zT value of 0.69 was obtained at 623 K in 5 mol. % Sn-doped sample which was about 6 times higher than that of undoped sample. The solid-solutions of Cu3SbS4(1-y)Se4y were studied to further improve the thermoelectric properties. The lattice thermal conductivity was reduced in solid-solution due to the local mass contrast and alloying scattering, but there was no further improvement in zT value due to the decrease in Seebeck coefficient. Another solid solution of Cu3Sb1-xBixS4 was studied, but Bi had very low solubility and a second phase was formed instead of forming the solid solution. Future work should focus on reducing the lattice thermal conductivity of Cu3SbS4 without impacting its electrical properties.
83

Estudo da estabilização na liga Cu-Al-Mn com memória de forma

PINA, Euclides Apolinário Cabral de January 2006 (has links)
Made available in DSpace on 2014-06-12T17:40:06Z (GMT). No. of bitstreams: 2 arquivo7607_1.pdf: 2211073 bytes, checksum: b41804eead923399b6fc86851c635dc3 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Este trabalho teve por objetivo estudar alguns tratamentos térmicos para se eliminar ou inibir o processo de estabilização da martensita que é um fenômeno indesejado nas aplicações tecnológicas das ligas com memória de forma, provocando importantes alterações nos fenômenos de memória de forma, resultando em importantes modificações nos comportamentos físicosmecânicos do material. A estabilização da martensita pode ser eliminada ou atenuada através do emprego de tratamentos térmicos específicos ou a utilização de novos elementos de ligas. O estudo do envelhecimento envolve também os comportamentos das interfaces martensita/martensita e austenita/martensita, e da tensão crítica de indução da transformação. Foi estudada uma liga de composição nominal Cu-10%Al-8,4%Mn, que tem temperaturas críticas das transformações martensíticas em torno da temperatura ambiente, obtida a partir da fusão dos elementos químicos num forno de indução de 24 KVa. Amostras foram preparadas para estudo da microestrutura (microscopia ótica), da estrutura cristalina (difração de raios-X), para caracterização das temperaturas de transformação de fase (resistividade elétrica e ensaio de flexão). As amostras foram submetidas aos seguintes tratamentos térmicos de betatização: Têmpera em água a 25°C (BT25), Têmpera em água a 100°C (BT100) e Têmpera ao Ar (BTAr). Em seguida a liga foi caracterizada microestruturalmente apresentando a fase martensítica β 1, que após aquecimento apresenta as características da transformação martensítica inversa, com a fase austenítica ou matriz com estrutura de super-rede DO3. Na difração de raios-X foram obtidas características da fase martensítica β 1, com planos característicos da estrutura ordenada ortorrômbica 18R (β 1). Na resistividade elétrica a baixa temperatura analisou-se o comportamento das curvas de resistividade elétrica versus temperatura, para os diferentes procedimentos de tratamentos térmicos, e a partir das curvas foram determinadas às temperaturas críticas de transformação (AS, AF, MS e MF), as amplitudes térmicas (AT) e as histereses térmicas (HT). Foram realizados ensaios de flexão do tipo viga engastada para simular o efeito memória de forma com uma carga de 13 MPa aplicada à amostra através de um sistema de polia sendo realizada a ciclagem térmica. As curvas da deformação versus temperatura após carregamento da amostra na fase martensítica apresenta uma deformação, em seguida é aquecida e depois resfriada. No aquecimento há um comportamento linear da deformação em função da temperatura. No resfriamento a amostra apresenta um aumento da deformação pseudoplástica. Na resistividade elétrica a alta temperatura verificou-se as modificações nas curvas de temperaturas elevadas onde ocorrem às reações de transição ordem-desordem e de precipitação de fases. Difrações de raios-X foram realizadas a fim de se observar as modificações estruturais da fase martensítica. Os resultados foram analisados em função dos fenômenos da estabilização martensítica tais como supersaturação de lacunas de têmpera e transições ordem-desordem. Os resultados indicam alguns parâmetros que devem ser utilizados para minimizar os problemas causados pelo envelhecimento das ligas Cu-Al-Mn com memória de forma
84

"Kinetic modeling of ammonia selective catalytic reduction for cleaning emissions from vehicles"

Coelho, Filipa Alexandra Macedo Tavares January 2012 (has links)
Trabalho de investigação desenvolvido na Chalmers University of Technology. Department of Chemical and Biological Engineering. Division of Chemical Engineering. Competence Centre for Catalysis / Tese de mestrado integrado. Engenharia Química. Faculdade de Engenharia. Universidade do Porto. 2012
85

A GENETICALLY INFORMED STUDY OF ACUTE THREAT ENDOPHENOTYPES FOR CALLOUS-UNEMOTIONAL TRAITS

Moore, Ashlee A. 01 January 2019 (has links)
Introduction. Callous-unemotional (CU) traits predict socially debilitating outcomes including Antisocial Personality Disorder and violent crime in adulthood. Despite significant research, the etiology of CU traits is not well understood. This dissertation incorporates genetic, physiological, neuroanatomical, and self-report measures to investigate the etiology of CU traits. Specifically, this project focuses on measures previously found to associate with impaired fear-processing observed in individuals high on CU. Brain morphometry for paralimbic regions of interest (ROIs) and electromyographic facial eyeblink reflex to startle and fear-potentiated startle probes were investigated as potential endophenotypes for CU traits. Methods. Two genetically informative (ages 9-20) twin samples (N=1696 individuals; 848 twin pairs) were used to estimate the changing heritable and environmental influences on CU over the age range of 9-20 using age-moderated biometric structural equation modeling (SEM). To determine potential endophenotypes, shared genetic variance with CU was examined for baseline and fear-potentiated startle reflex and morphometric measures of brain ROIs. Results. The heritability of CU increases over the ages of 9-20, from approximately 34% at age 9 to 47% at age 20. Therefore, environmental mechanisms for CU are most influential at younger ages. Although there were no significant associations after correction for multiple testing, there was some evidence to suggest potential positive associations between CU traits and baseline and fear-potentiated startle in younger (9-14) females. There was also evidence suggesting potential negative associations between CU traits and right anterior cingulate cortex thickness as well as right posterior cingulate cortex thickness in females only. There was no genetic covariance between CU and any of the examined physiological or neuroanatomical phenotypes. Discussion. These results suggest that middle childhood may be the most salient time for environmental interventions associated with preventing or ameliorating CU traits. Furthermore, these results suggest that the cingulate cortex may play a role in the development of CU traits, possibly in females specifically. The cingulate cortex may influence CU traits through its roles in emotional processing, learning, and memory. Larger samples will likely be needed to determine the genetic relationship between CU traits and the structural development of the cingulate cortex.
86

Metalated Nitriles: Ligand Exchange and Copper-Catalyzed Reactions

Nath, Dinesh 17 April 2015 (has links)
This thesis describes new methods of carbon-carbon bond formation using metalated nitriles generated via metal exchange reactions. Sulfinylnitriles undergo a sulfinyl-metal exchange to yield lithiated, magnesiated and zincated nitriles, which can trap a range of electrophiles. The sulfinyl-metal exchange is effective with vinylic, quaternary and tertiary substitution patterns and addresses the long-standing problem of alkylating secondary nitriles. This method was then further extended to other oxidation states of sulfur, namely sulfonyl-metal exchange and relatively unknown sulfide-metal exchange. The sulfide metal exchange overcomes the problem related to the propensity of highly substituted sulfinylnitriles to eliminate. Sulfide-metal exchange is synthetically attractive because of the numerous methods for generating arylsulfides and the high tolerance of arylsulfides to numerous reagents. <br>A copper-catalyzed arylation reaction of aryl iodides and metalated nitriles was developed using catalytic Cu (I) and an amine ligand. A proof of principle has been established, providing a sound basis for developing the reaction. A new strategy has been developed for alkylation of alkenenitrile using LDA as base in presence of catalytic CuCN. Subsequent trapping with an electrophile, affords alkylated alkenenitriles in which the olefin is no longer in conjugation with the nitrile. <br>The distinct structural differences between N- & C-metalated nitriles have been harnessed in a series of chemoselective alkylations. Lithiated nitriles are found to be particularly reactive toward alkyl halides whereas magnesiated nitriles react selectively with oxygenated electrophiles. Using this strategy allows chemoselective alkylation of metalated nitriles. / Bayer School of Natural and Environmental Sciences; / Chemistry and Biochemistry / PhD; / Dissertation;
87

Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

Ozbilen, Ahmet Ziyaettin 01 December 2010 (has links)
The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the four-step Cu-Cl cycle. / UOIT
88

Equilibrio termodinámico y caminos de solidificación del sistema CU-O-H-Pb

Touron Rivadulla, José Luis 12 July 2001 (has links)
No description available.
89

none

Tai, Chia-yi 21 July 2010 (has links)
none
90

Preparation and characterization of Cu(In,Al)Se2 thin film

Wu, Wei-Jung 13 August 2010 (has links)
Polycrystalline Cu(In,Al)Se2 films were deposited by four-source evaporation of Cu, In, Al, and Se using Knudsen type sources in which the elemental fluxes were coincident onto soda lime glass substrates. The single-phase films with composition of Cu:In:Al:Se = 28:15:9:48 which were confirmed by X-ray diffraction and micro-Raman spectroscopy were deposited at substrate temperature of 560¢J. Secondary phases were observed when temperature of substrate is below 560¢J due to incompletely reaction. Under fixed effusion flux, the value of Cu/(In+Al) becomes larger as temperature of substrate increase. However, the value of Al/(In+Al) keeps nearly constant as temperature increase. The band gap is 1.53 eV derived from the result of spectrophotometer. The room temperature resistivity, Hall mobility and carrier concentration of the films are 0.28 £[cm, 24.63 cm2V-1s-1 and 1.27x1019 cm-3 respectively. And the conductive type is p-type. By the way, we try to grow Cu(In,Al)Se2 film in the presence of an Sb beam at substrate temperature of 440¢J. After the addition of an Sb beam, surface morphology become smooth and compact, but there is no significant grain growth. No matter an Sb beam adds or not, secondary phases were observed in both case due to the low temperature of substrate.

Page generated in 0.0522 seconds