• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 25
  • 19
  • 16
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Bioimpedance Spectroscopy Methods for Analysis and Control of Neurostimulation Dose

Caytak, Herschel Binyomin 03 January 2019 (has links)
TDCS is a form of non-invasive neurostimulation that is comprised of injection of current via strategically placed scalp electrodes into targeted areas of the brain. TDCS has shown therapeutic benefit for numerous clinical applications. This technique has not however been widely adopted due to high variability of response to the stimulation. Current state of the art methods for optimizing tDCS are based on FEM models that generally model tissue as isotropic and homogeneous and do not take into account inter subject variability of head tissue electrical properties. We therefore develop an in-vivo method of measuring and analyzing bioimpedance spectroscopy measurements of the head to estimate change to tDCS dose in neural tissues for different subjects. Finite element simulations are implemented on a realistic MRI derived head model. 5\% random Gaussian noise is added. Experimental bioimpedance measurements are taken of the heads of 8 subjects. We simulate sensitivity distribution and impedance for a variety of 2 and 4 electrode configurations over a wide frequency range. We also extract Cole parameters and implement PCA on simulated and experimental impedance. We demonstrate that the Cole model of the head can be accurately approximated by the sum in series of Cole systems of each tissue. Comparison of Cole parameters from various simulated electrode configurations show statistical differences (paired t test $p<.05$). PCA shows that close to 100\% of the variance between two impedance spectra is described along a single principal component. Variation described by the second principal component increases as a function of increasing inter electrode gap which may be related to changes in dose. FEM and experimentally derived Cole parameters show different trends for various electrode configurations, good agreement is however shown for the PCA results. The outcome of this research may lead to a higher tDCS efficacy by improving standardization and control of stimulation by relation of dose and bioimpedance spectra characteristics.
32

Processing of MgB2 bulk superconductor by infiltration and growth

Bhagurkar, Ashutosh January 2017 (has links)
Superconductivity in magnesium diboride (MgB2) was discovered in 2001. The relatively high Tc (39 K), high critical current density, long coherence length (∼6 nm), low raw material cost, lower density and relative ease of fabrication make this material an exciting choice for practical applications. Furthermore, lower anisotropy and strongly linked current flow in untextured polycrystalline samples, unlike its HTS counterparts, has enabled the development of different processing routes to fabricate MgB2 in the form of wires, tapes, thin films and bulks. Conventionally, MgB2 is synthesized by in situ sintering, where elemental Mg and B powders are reacted to produce MgB2. Although the superconducting phase can be obtained with relative ease, the resulting sample is generally only around 50% dense, due to formation of large pores inside sintered bulks arising from the volatility of magnesium and 25% volume contraction in MgB2 phase formation. Although the use of high pressure is effective to promote sintering and subsequent densification, the need to use large pressure vessels represents a significant practical limitation for the development of a practical process and of the achievable dimensions in the final MgB2 sample. As a result, the fabrication of high density, bulk MgB2 remains a challenging processing problem. This study explores the “Infiltration and Growth” (IG) technique, an established processing route for fabrication of dense ceramics/ceramic matrix composites, as a potential solution. Boron powders of varying characteristics were infiltrated with Mg(l) to obtain bulk MgB2 samples. The samples were analysed using techniques such as XRD, SEM and hardness to analyse various phases formed during the process. These samples typically contained MgB2 with minor quantities of Mg. Physical properties of superconducting MgB2, such as Tc, Jc and Hc2, were established. Furthermore, the effective current carrying cross-section was estimated from resistivity measurements using Rowel’s analysis. Continuous Mg channels were major defects in IG processed samples and their presence was found to limit long range current flow. These channels are eliminated by incorporating Mg/AlB2/MgB2 powders in the precursor to facilitate in-flux of Mg, leading to a more uniform infiltration process, thereby enabling fabrication of near-net shaped MgB2 bulk superconductors. Such samples showed an almost identical value of trapped magnetic flux at the top and bottom surfaces, suggesting a high degree of uniformity in MgB2. A careful microstructural analysis of a series of samples indicated that MgB2 phase formation in IG process occurred in three distinct stages: (1) Intermediate boride formation (2) Bulk liquid Mg infiltration and (3) MgB2 layer formation. Due to volume expansion involved in stage 1, cracks formed in the β-Boron particles and propagated radially inwards during stage 3. The growing MgB2 particles sintered simultaneously with the formation of grain boundaries during the process. Much enhanced performance of MgB2 was achieved by virtue of C-doping. Increased Jc was attributed to generation of lattice strains and loss of crystallinity in MgB2 as a result of C-doping. Finally, trapped field measurements were performed on homogeneous C-doped MgB2 bulks. The trapped field obtained (4.13 T) in five stacked of bulks is the highest obtained in MgB2 bulks synthesized under ambient pressure conditions.
33

Effect of Grain Orientation on Electromigration in Sn-0.7Cu Solder Joints

January 2013 (has links)
abstract: Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This paper reviews electromigration in Pb- free solders, focusing specifically on Sn0.7wt.% Cu solder joints. Effect of texture, grain orientation, and grain-boundary misorientation angle on electromigration and intermetallic compound (IMC) formation is studied through EBSD analysis performed on actual C4 bumps. / Dissertation/Thesis / M.S. English 2013
34

Molybdenum Disulfide-Conducting Polymer Composite Structures for Electrochemical Biosensor Applications

Jia, Hongxiang 04 November 2016 (has links)
Lactic acid is widely existing in human bodies, animals and microorganisms. Recently, using biosensor to detect the concentration of lactic acid and diagnose disease have attracted great research and development interests. Nanocomposites is one of the best material used for biosensor because their wonderful conductivity, optical and electrochemical properties. In the study, MoS2 and polypyrrole (PPY) are used for the composite material electrode. To determine whether lactate oxidase (LOD) was helpful for the biosensor’s detective properties, both PPY-MoS2 film with LOD and PPY-MoS2 film without LOD are being tested. The fourier transform infrared spectroscopy (FTIR) and Raman spectroscopic techniques have been used to understand the chemical bonds in the nanocomposite film. The X-ray diffraction (XRD) technique has been performed to understand the crystallographic structure of the MoS2 -PPY film. The morphologies were confirmed by scanning electron microscopy (SEM). The UV-vis spectroscopy has been used to determine the band structure of composite film. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were used to analyze in different concentration of solution, under different scan rate to obtain stability and work efficiency. These results were compared with PPY-MoS2 film with and without lactate oxidase conditions. The chronoamperometric technique has been used to detect the concentration of lactic acid.
35

The influence of material factors, including cold work, on the susceptibility of stainless steels to stress corrosion cracking

Ahmed, Ismaila Idowu January 2011 (has links)
The main objective of the thesis was to gain better understanding of key parameters associated with Cold Work (CW) and their possible effects on Stress Corrosion Cracking (SCC) susceptibility of Austenitic Stainless Steels (ASS) cold rolled to different degrees. The microstructural characterisation of the cold rolled ASS was carried out using optical microscopy to determine and correlate the average grain size with the level of CW. The assessment of martensite development during the CW was carried out using the neutron diffraction technique. The effects of CW levels and strain paths on the lattice strain evolution during the in-situ loading and on the mechanical failure of cold worked ASS were studied. The electrochemical behaviour of cold rolled ASS was also studied. Finally, The SCC susceptibility of ASS was investigated using the Slow Strain Rate Testing (SSRT) techniques. The post-mortem analyses of the failed samples were carried using the optical and Scanning Electron Microscopy (SEM). The study showed that the average grain size decreases with CW and reaches minimum at 20%CW. The smallest and the largest grain size occurred consistently on the Longitudinal (L) and Short-transverse (S) plane respectively. Evidence of martensite development was only found during the plastic deformation at cryogenic temperature and none was observed at ambient temperature. The study showed that the strength of material increases with the level of CW. The Bauschinger effect occurred when the strain path is reversed and its magnitude is independent on whether the tensile or compressive prestraining comes first or last but rather dependent on the amount of CW. The correlation between the CW levels and the lattice strain evolution during the in-situ loading showed that, the lattice strain increases with prestrain and reaches saturation in the material prestrained to 20%CW.The result of the mechanical failure test showed that, 20% cold rolled material loaded along the L and Transverse (T) directions showed a gradual failure, whilst the material loaded along the S direction exhibited a rapid failure. The SEM micrographs suggest that materials loaded along the L and T direction failed with the characteristic features of pure ductile failure while the specimen loaded along S direction showed mixed features of the ductile and brittle failure. The electrochemical properties of the cold rolled materials are more affected by sample orientation than the levels of CW. The short-transverse plane was observed to be most noble whilst the longitudinal plane was the least noble. The results of the SSRT in the chloride environment showed that the plastic elongation, the ultimate tensile strength and the time to failure decrease as the applied potential increases. The post-mortem analysis of the failed samples with the SEM showed that, the fracture surface contained region of ductile failure characterised by dimples, and region of SCC with secondary cracks along the loading axis. Whilst the cross sectional analysis, showed evidence of predominant transgranular stress corrosion cracks. The study found that SCC susceptibility of the ASS is directly linked to strain heterogeneity and directional anisotropy caused by cold working.
36

Optimalizace procesu kontaktování CMOS čipů pro vyšší proudové zatížení / Optimalization of CMOS Chip Interconnection Process for Higher Current Load

Novotný, Marek January 2009 (has links)
This work deals with silicon chip interconnection with a view to high current up to 10A. A wire bonding method is used for interconnection. The first part of investigation is focused on the modeling and simulation by the help of program ANSYS. Thermo mechanical stressing and current density is important parts of this research. Stress and current density distribution are results of the first part. The experimental part describes transition resistance, electro migration and thermal process in the connection of wire and chip pad. A controlled current source (0 – 10A) is used for measurement. The current source makes it possible to 4-point method measurement with sampling rate 1,5MHz.
37

Prévision des effets de vieillissement par électromigration dans les circuits intégrés CMOS en noeuds technologiques submicroniques. / Forecasting the effects of aging by electromigration in the circuits integrated CMOS submicron technology nodes

Ouattara, Boukary 08 July 2014 (has links)
L'électromigration (EMG) est l'une des conséquences de la course à la miniaturisation des composants électroniques en général et la réduction des dimensions des interconnexions en particulier. Il est identifié comme l'un des phénomènes critiques de fiabilité pour les circuits intégrés en technologies submicroniques. Les méthodes de vérification de ce phénomène utilisées durant la conception de circuits sont pour la plupart basées sur des règles de densité de courants et de température. Ces règles deviennent de plus en plus difficiles à mettre en place, compte tenue de l'augmentation des densités de courant dans les réseaux d'interconnexions. Les travaux de cette thèse s'inscrivent dans la dynamique de recherches de moyens d'amélioration de la détection des risques d'électromigration durant la phase de conception. Le but est d'établir une relation entre violations des règles électriques et la physique de dégradation des interconnexions. Les résultats obtenus au cours des tests de vieillissement nous ont permis de repousser les limites de courant sans altérer les durées de vie des circuits. Enfin, ce projet été l'occasion de définir des règles conception basé sur l'optimisation des cellules d'horloges dans la grille d'alimentation des circuits intégrés. L'application des solutions proposées au cours de ces travaux ont permis de réaliser des circuits robustes aux effets EMG. / Electromigration (EMG) is a consequence of miniaturization of integrated circuits in general and the reduction of interconnect dimensions in particular. It is identified as one of the critical reliability phenomenon for integrated circuits designed in submicron technologies. The methods of checking this phenomenon at design level are mostly based on current density rules and temperature. These rules are becoming difficult to implement due to increasing current density in interconnection network. This thesis is based on researching for ways to improve detection of electromigration risks at design level. The goal is to establish a relation between electrical rules and interconnect degradation mechanism. Results obtained from ageing tests permit us to relax current limit without altered circuit lifetimes. Finally, this project has been instrumental to define design rules based on optimization of clock tree cells placement in integrated circuit power grid. The application of solution proposed during this work permit to design robust circuits toward EMG.
38

Electrical Performance of Copper-Graphene Nano-Alloys

Smith, Jacob A. 13 June 2019 (has links)
No description available.
39

Real-Space Approach to Time Dependent Current Density Functional Theory

Jensen, Daniel S. 09 July 2010 (has links) (PDF)
A real-space time-domain calculation of the frequency-dependent dielectric constant of nonmetallic crystals is outlined and the integrals required for this calculation are computed. The outline is based on time dependent current density functional theory and is partially implemented in the ab initio density functional theory FIREBALL program. The addition of a vector potential to the Hamiltonian of the system is discussed as well as the need to include the current density in addition to the particle density. The derivation of gradient integrals within a localized atomic-like orbital basis is presented for use in constructing the current density. Due to the generality of the derivation we also give the derivation of the kinetic energy, dipole, and overlap interactions.
40

Nickel-based Catalysts for Urea Electro-oxidation

Yan, Wei 12 June 2014 (has links)
No description available.

Page generated in 0.0831 seconds