Spelling suggestions: "subject:"curvatura dde gauss"" "subject:"curvatura dde jauss""
1 |
Hipersuperfícies mínimas de R4 com curvatura de Gauss-Kronecker nula. / Minimum hypersurfaces of R4 with zero Gauss-Kronecker curvature.Pereira, José Ilhano da Silva 25 August 2017 (has links)
PEREIRA, José Ilhano da Silva. Hipersuperfícies mínimas de R4 com curvatura de Gauss-Kronecker nula. 2017. 44 f. Dissertação (Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-10-02T15:01:31Z
No. of bitstreams: 1
2017_dis_jispereira.pdf: 596580 bytes, checksum: 3c2c1a16d4ce273bfb7c246f7926c01a (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,
Estou devolvendo a Dissertação de JOSÉ ILHANO DA SILVA PEREIRA, pois há alguns erros a serem corrigidos. Os mesmos seguem listados a seguir.
1- FOLHA DE APROVAÇÃO (substitua a folha de aprovação, por outra que não contenha as assinaturas dos membros da banca examinadora)
2- NUMERAÇÃO INDEVIDA (a numeração indevida de página que aparece na folha de aprovação deve ser retirada)
3- RESUMO (retire o recuo de parágrafo presente no resumo e no abstract)
4- PALAVRAS-CHAVE (apenas o primeiro elemento de cada palavra-chave deve começar com letra maiúscula, assim reescreva as palavras-chave como no exemplo a seguir: Hipersuperfícies mínimas)
5- SUMÁRIO (Os títulos dos capítulos principais, que aparecem no sumário e no interior do trabalho, devem estar em caixa alta (letra maiúscula).
Ex.: 2 PRELIMINARES
2.1 Tensores
6 – REFERÊNCIAS (retire o conjunto de “citações” à autores que aparece no final das referências bibliográficas, pois elas fogem ao padrão ABNT para a página das referências)
Atenciosamente,
on 2017-10-04T17:50:58Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-10-23T19:57:28Z
No. of bitstreams: 1
2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-11-01T12:35:13Z (GMT) No. of bitstreams: 1
2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5) / Made available in DSpace on 2017-11-01T12:35:13Z (GMT). No. of bitstreams: 1
2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5)
Previous issue date: 2017-08-25 / This work does study the complete minimal hypersurfaces in the Euclidean space R4 , with Gauss-Kronecker curvature identically zero. Our main result is to prove that if f: M3 → R4 is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature boun-ded from below, then f(M3) splits as a Euclidean product L2 × R , where L2 is a complete minimal surface in R3 with Gaussian curvature bounded from below. Moreover, we show a result about the Gauss-Kronecker curvature of f, without any assumption on the scalar curvature. / Este trabalho tem como objetivo estudar as hipersuperfícies mínimas em R4, com curvatura de Gauss-Kronecker identicamente zero. Como resultado principal provamos que se f : M3 → R4 é uma hipersuperfície mínima com curvatura de Gauss-Kronecker identicamente zero, segunda forma fundamental não se anulando em nenhum ponto e curvatura escalar limitada inferiormente, então f(M3) se decompõe como um produto euclidiano do tipo L2 × R , onde L2 é uma superfície mínima de R3 com curvatura Gaussiana limitada inferiormente. Finalmente, apresentamos um resultado sobre a curvatura de Gauss-Kronecker de f sem nenhuma hipótese sobre a curvatura escalar.
|
2 |
Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.Zapata, Juan Fernando Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
|
3 |
Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.Juan Fernando Zapata Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
|
4 |
Superfícies de translação Weingarten lineares nos espaços euclidiano e Lorentz-MinkowskiFerreira, Thiago Lucas da Silva, 92-99320-5663 14 December 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-06-19T17:00:58Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
dissertação-Thiago Lucas-FINAL.pdf: 424556 bytes, checksum: 504bc5cad61e90dcf5cfc403f099b634 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-06-19T17:01:10Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
dissertação-Thiago Lucas-FINAL.pdf: 424556 bytes, checksum: 504bc5cad61e90dcf5cfc403f099b634 (MD5) / Made available in DSpace on 2018-06-19T17:01:10Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
dissertação-Thiago Lucas-FINAL.pdf: 424556 bytes, checksum: 504bc5cad61e90dcf5cfc403f099b634 (MD5)
Previous issue date: 2016-12-14 / In this dissertation we will present a demonstration that a linear Weingarten
translation surface in Euclidean space and Lorentz-Minkowski space
should have constant mean curvature or constant Gaussian curvature. The
work is based on the article "Translation surfaces of linear Weingarten type"
Antonio Bueno and Rafael López. / Nesta dissertação apresentaremos uma demonstração de que uma superfície
de translação Weingarten linear no espaço euclidiano e no espaço Lorentz-
Minkowski deve ter curvatura média constante ou curvatura de Gauss constante.
O trabalho é baseado no artigo "Translation surfaces of linear Weingarten
type"de Antonio Bueno e Rafael López.
|
Page generated in 0.0572 seconds