• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 75
  • 16
  • 2
  • 1
  • Tagged with
  • 259
  • 259
  • 164
  • 70
  • 60
  • 57
  • 38
  • 37
  • 37
  • 36
  • 33
  • 30
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Régulation de la phase M du cycle cellulaire par CDK1, PP2A et CDC6 / Regulation of the M-phase of cell cycle by CDK1, PP2A and CDC6

El Dika, Mohammed 30 September 2013 (has links)
L'objectif de cette thèse est de mieux comprendre la régulation de la phase M du cycle cellulaire. Nos expériences ont été effectuées dans des extraits acellulaires d’embryons de Xenopus laevis. Tout d'abord, nous montrons que le moment de l'entrée en phase M est précisément déterminé par un équilibre entre l'activité de la protéine kinase CDK1 et l’activité d’une protéine phosphatase sensible à l'acide okadaïque, PP2A. Nous montrons également le rôle de la protéine CDC6 dans la régulation de l'entrée dans la première phase M embryonnaire. En effet, CDC6 inhibe CDK1 et à travers cette action régule la dynamique de cette kinase lors de l'entrée et de la progression en phase M. Ces résultats mettent en évidence un nouveau contrôle qui précise le moment du clivage embryonnaire. Ce contrôle joue un rôle clé dans la coordination entre les mécanismes de régulation du cycle cellulaire et le programme de développement de l'embryon. / The aim of this thesis is to understand better the regulation of the M-phase of the cell cycle. Experiments were done in cell-free extracts of Xenopus laevis one-cell embryos. Firstly, we show that the timing of the M-phase entry is precisely determined by a balance between the activity of CDK1 kinase and okadaic acid sensitive phosphatase, mainly PP2A. Secondly, we show the role of CDC6 protein in regulation of the entry into the first embryonic M-phase. CDC6 inhibits CDK1 and through this action regulates the dynamic of this kinase upon M-phase entry and during M-phase progression. This mechanism discovered during my PhD allows controlling precisely the timing of embryonic cleavage. This control plays a key role in coordinating the cell cycle regulating machinery and the development program of the embryo.
52

Dynamique de l'organisation nucléaire des séquences d'ADN répétées centromériques humaines au cours du cycle cellulaire / Human centromeric repeated dna sequences nuclear organization dynamics during the cell-cycle

Ollion, Jean 07 February 2014 (has links)
Le noyau des cellules est une structure très organisée, dont l'organisation joue un rôle important dans la régulation de l'expression des gènes. La compréhension des mécanismes à l'origine de cette organisation est donc essentielle à la compréhension du fonctionnement des génomes. De nombreuses expériences conduites chez la souris ont montré que les régions centromériques (RC) des chromosomes jouent un rôle dans l'organisation du noyau. L'organisation spatiale des RCs humaines est beaucoup moins étudiée, principalement à cause de la complexité des séquences qui les composent, qui rend plus difficile leur détection. Nous avons développé des outils de traitement et d'analyse quantitative d'image, qui, combinés à des nouveaux marqueurs des RCs humaines, nous ont permis de mieux décrire deux aspects de leur organisation spatiale. D'une part nous avons montré qu'elles se positionnent préférentiellement en périphérie du noyau ou aux bords des nucléoles, avec des fréquences qui dépendent des chromosomes. D'autre part nous avons montré qu'elles s'agrègent dans le noyau pour former un compartiment d'hétérochromatine, qui présente des caractéristiques similaires à celui observé dans d'autres espèces telles que la souris. Ces deux aspects sont tous deux inter-dépendants et varient au cours du cycle cellulaire. Cette description nouvelle met sur la piste de mécanismes responsables de l'organisation particulière des RCs, qui pourront être étudiés grâce à la méthode d'analyse et aux observables que nous avons développées. L'étude de ces mécanismes permettra de mieux comprendre la fonction des RCs humaines dans l'organisation du noyau. / The cell nucleus is a highly organized structure, playing an important role in gene regulation. Understanding the underlying mechanisms is therefore essential for understanding genome function. Numerous studies conducted in mouse cells have shown that centromeric regions (RC) of chromosomes play a role in nuclear organization. The spatial organization of human RCs is less studied, mainly because of the complexity of the underlying DNA sequences that make them hard to detect. We have developed image processing and analysis tools, that, combined with new markers for human RCs, have allowed us to draw a better description of two features of their spatial organization. On the one hand, we have shown that they are preferentially located close to the nuclear periphery or nucleoli borders, with chromosome-dependent frequencies. On the other hand, we have shown that they cluster to form a heterochromatic compartment that displays similar properties as the one observed in other species such as mouse. Both features are inter-dependent, and vary throughout the cell-cycle. This new description puts on the track of mechanisms responsible for the peculiar organization of RCs. Those mechanisms could be studied using the methodology and the observables we have developed. The study of those mechanisms will provide a better understanding of human RC function in nuclear organization.
53

Régulation du compartiment des progéniteurs hématopoïétiques par les faibles concentrations en oxygène : analyse de la survie, de la prolifération et de la différenciation du modèle FDCP-Mix / Hematopoietic progenitor compartment regulation by low oxygen concentration : survival, proliferation and differentiation analysis of the FDCP-Mix model

Guitart, Amélie Valérie 11 December 2009 (has links)
Les concentrations d’oxygène (O2) dans la moelle osseuse hématopoïétique, sont très inférieures à celle de l’air (20% d’O2) puisqu’elles vont de 4% dans les zones juxta-vasculaires à 0,1% près de l’endoste, où siègent les cellules souches hématopoïétiques (CSH), essentiellement quiescentes. Ce paramètre physiologique, rarement pris en compte, est un élément important dans la régulation de l’hématopoïèse. Les effets bénéfiques des faibles concentrations d’oxygène sur le maintien des cellules souches hématopoïétiques sont maintenant bien établis. Par contre, la réponse du compartiment des progéniteurs aux faibles concentrations d’oxygène est moins examinée mais très discutée, certains montrant une différenciation associée à un blocage de la prolifération alors que d’autres montrent leur disparition de la culture probablement par apoptose. C’est dans ce contexte que se place ces travaux qui visent à approfondir les effets des faibles concentrations en oxygène (de 3 à 0,1%) sur ce compartiment. La culture pendant 72h à 0,1% O2 de la lignée murine de progéniteurs hématopoïétiques non leucémiques FDCP-Mix entraîne leur arrêt progressif en quiescence (Ki-67 négatif) de ces cellules sans induction d’apoptose. Cet arrêt est associé à la différenciation granulocytaire d’une majorité de la population. Dans ces mêmes conditions de culture persiste une population restreinte de cellules qui s¹auto-renouvellent lentement et qui sont capables après repiquage en culture à 20% d’O2 de repeupler une culture liquide et de former des colonies en milieu semi-solide. Ces changements fonctionnels sont associés aux modifications de protéines du cycle cellulaire impliquées dans la quiescence cellulaire : p27KIP1, pRb et CDK. Cette caractérisation permet désormais d’utiliser cette lignée comme modèle pour l’étude des équilibres fondamentaux au maintien de l’homéostasie hématopoïétique. / Oxygen concentrations (O2) in hematopoietic bone marrow vary from 4% in capillaries to less than 0.1% in subendosteum, where hematopoietic where mostly quiescent stem cells reside. This physiological factor, rarely investigated, is an essential piece of hematopoiesis regulation. The beneficial effects of low oxygen concentrations on the maintenance of hematopoietic stem cells are now well established. In contrast, the effects of low O2 concentration on the progenitors compartment, were much less explored and are then more controversial: some articles evidence a pro-differentiative effect related to a cell proliferation blockade while others observe their rapid disappearance from cultures probably due to apoptosis. In this particular context takes place this work which aims to investigate the low oxygen concentration effect (from 3% to 0.1%) on this precise compartment. Culture of the murine non-leukemic hematopoietic progenitor cell line FDCP-Mix line at 0.1% O2 during 72h induces a progressive G0 quiescence blockade (Ki-67 negative) without apoptosis increase. This G0 cell cycle arrest is correlated with the granulo-monocytic differentiation of most cells. In the mean time a minor population of self-renewing cells continues to cycle slowly as evidenced by their 5-FU sensitivity in primary culture and by their capacity to give rise to colonies and to repopulate liquid cultures when replated in cultures at 20% O2. G0 quiescence and granulocytic differentiation induced by low O2 concentrations is associated with cell cycle protein modifications: p27KIP1, pRb, CDK. This characterization allows FDCP-Mix usage as model to investigate fundamental balances responsible for hematopoietic long-term maintenance.
54

Fonction différentielle des protéines du groupe Polycomb durant le développement de la drosophile / Differential Function of PRC1 and PRC2 proteins during Drosophila eye development

Sakr, Samy 24 October 2011 (has links)
Les complexes du groupe Polycomb (PcG) sont des répresseurs transcriptionnels capables de maintenir un état inactivé de la chromatine au niveau de leurs gènes cibles via des modifications post-traductionnelles des histones. Historiquement définis comme des répresseurs des gènes homéotiques, les protéines du PcG sont maintenant reconnues comme des répresseurs de gènes contrôlant le cycle cellulaire. Dans cette étude nous avons appréhendé l'implication des gènes du PcG E(z), Su(z)12, Pc, ph, Sce, Scm et Psc-Su(z)2 dans le contrôle de l'état prolifératif des cellules épithéliales des disques imaginaux in vivo. En utilisant des mutations nulles de ces gènes, nous avons étudié l'implication de ces protéines dans des processus biologiques tels que la prolifération, la croissance cellulaire, la différentiation et l'apoptose dont la dérégulation est associée à la tumorigénèse. Au cours de ce travail, nous avons constaté que les complexes du PcG ne se comportent absolument pas comme attendu : non seulement les différentes protéines composants le complexe PRC1 n'assument pas les mêmes fonctions, mais, par ailleurs, les complexes PRC1 et PRC2 ne collaborent pas et présentent même des effets antagonistes. Ainsi, nous avons répartit ces protéines dans deux sous-groupes : Le premier contient PH et Psc-Su(z)2 et agit comme suppresseur de tumeurs. Le deuxième groupe contient E(z), Su(z)12 et PC, des protéines qui favorisent la prolifération cellulaire plutôt que de l'inhiber. Enfin, nous avons recherché les cibles dont la dérégulation pourrait corréler avec les phénotypes associés à ces mutants. Nous avons identifié que certaines voies de signalisations impliquées dans le développement de l'œil de la Drosophile sont régulées de façon opposés par les protéines de ces deux sous-groupes. / Polycomb group (PcG) proteins are transcriptional repressors that were historically identified as regulators of homeotic genes. However, PcG proteins are now recognized as repressors of genes controlling the cell cycle. In this study we analyzed the role of the PcG genes E(z), Su(z)12, Pc, ph, Sce, Scm, and Psc-Su(z)2 in control of proliferation of epithelial cells in imaginal discs in vivo. Using null mutations of these genes, we investigated the involvement of these proteins in growth, differentiation and cell polarity. Surprisingly, we found that mutation of specific PcG proteins induce differential effects on the overall growth of the eye-antennal imaginal disc. In particular, we investigated the involvement of these proteins in biological processes such as proliferation, cell growth, differentiation and apoptosis, whose deregulation is associated with tumorigenesis. In this work, we found that PcG complexes do not behave as expected: different PRC1 proteins components do not assume the same functions, and PRC1 and PRC2 complexes may actually induce antagonistic effects. Thus, we have divided these proteins into two subgroups: The first contains PH and Psc-Su(z)2 and acts as tumor suppressors. The second group contains E(z), Su(z)12 and PC, and these proteins appear to favor cell proliferation. Finally, we looked for targets whose deregulation may correlate with the mutant phenotypes. We have identified several signaling pathways involved in Drosophila eye development that are regulated in an opposing manner in mutants of these two subgroups.
55

Etude par génétique inverse du gène codant la protéine TARGET OF RAPAMYCIN d'Arabidopsis thaliana (AtTOR), l'homologue d'une kinase contrôlant la croissance cellulaire chez les eucaryotes

Menand, Benoit 25 March 2002 (has links) (PDF)
Les protéines kinase TOR (Target Of Rapamycin) ont été identifiées, chez les levures, les mammifères et la drosophile, comme des régulateurs majeurs de la croissance cellulaire. Ainsi, la progression des phases G1 à S du cycle cellulaire est bloquée par la rapamycine, un antibiotique capable d'inhiber spécifiquement TOR en formant un complexe ternaire avec le domaine FRB (FKBP-rapamycin binding domain) of TOR et une autre protéine appelée FKBP12 (FK506 and rapamycin Binding Protein). Ce travail présente l'étude moléculaire et génétique de l'homologue d'Arabidopsis thaliana des gènes TOR de levures et d'animaux. Nous avons clone l'ADNc de l'unique gène TOR d'Arabidopsis (AtTOR) qui contient 55 introns et code une protéine de 300 kDa qui présente un important taux d'identité avec ses homologues d'animaux et de levure. Cependant, la croissance végétative d'Arabidopsis, ainsi que celle d'autres plantes testées, sont insensibles à la rapamycine. Néanmoins, des expériences de double hybride ont montré que le domaine FRB de AtTOR est capable de fixer FKBP12 de levure d'une manière dépendante de la rapamycine. Deux mutants ( tor-1 et tor-2) ont été identifiés dans la collection de mutants d'insertion d'un ADN-T de l'INRA de Versailles. Chez les deux mutants, l'ADN-T s'est inséré en amont des domaines FRB et kinase. Les deux mutants ne se complémentent pas et ont un phénotype embryon létal caractérisé par le fait qu'un quart des graines d'une silique hétérozygotes présentent un arrêt prématuré du développement de l'albumen et de l'embryon, ce dernier étant bloqué au stade globulaire. Nous avons utilisé une fusion traductionnelle entre AtTOR et le gène rapporteur GUS présente dans le mutant tor-1 pour montrer que l'expression de AtTOR est restreinte à l'embryon, l'albumen, et tous les méristèmes primaires. Cela est différent de TOR de mammifères et TOR de drosophile qui sont exprimés dans tous les tissus. Ces résultats nous ont amené à discuter le rôle de AtTOR dans la croissance cellulaire et la prolifération. De plus, des expériences ayant pour but de rendre Arabidopsis résistante à la rapamycine ont été initiées, et des constructions ont été réalisées pour sur-exprimer AtTOR avec le système GAL4.
56

Modélisation structurée de la croissance cellulaire en chemostat: analyse et estimation

Lemesle, Valérie 27 February 2004 (has links) (PDF)
L'objet de cette thèse est la formulation, l'étude de modèles<br />structurés de croissance cellulaire dans un chemostat, appareil de culture de micro-organismes en laboratoire, et l'estimation de certaines variables d'état pour ces modèles. Après de bref rappels sur la biologie des espèces considérées et la présentation du dispositif expérimental, nous introduirons les modèles classiques utilisés pour décrire le chemostat ainsi que les modèles structurés prenant en compte la division cellulaire notamment. Nous construirons et étudierons alors deux modèles en équations différentielles ordinaires de dimension 3 mettant en valeur la croissance et la division d'une cellule. Nous<br />terminerons cette partie par la construction et l'étude d'un modèle basé sur des réactions biochimiques décrivant le stockage d'une cellule. La deuxième partie de cette thèse concerne l'estimation de certaines variables d'état. Ainsi, les notions d'observabilité et d'observateur seront introduites. Des observateurs classiques seront construits pour les modèles de croissance décrits dans la première partie. Enfin, comme en biologie les modèles sont souvent mal connus, nous construirons des estimateurs hybrides, donnant les variables d'état non mesurables en utilisant les variables mesurées et la connaissance partielle du modèle. Nous terminerons ces deux parties par d'autres applications possibles.
57

Auto-organisation temporelle du réseau de kinases dépendantes de cyclines contrôlant le cycle cellulaire chez les mammifères/Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle

Gérard, Claude 25 November 2009 (has links)
Au cours de ce travail de thèse, nous avons établi un modèle global pour le réseau de kinases dépendantes des cyclines (Cdks) qui contrôle la dynamique du cycle cellulaire chez les mammifères. Le modèle contient quatre modules Cdk régulés par phosphorylation-déphosphorylation, par des inhibiteurs de Cdk, et par la synthèse ou la dégradation de protéines. Les facteurs de croissance suscitent la transition d’un état stationnaire stable, état de quiescence, à un état de prolifération caractérisé par des oscillations entretenues du réseau de cyclines/Cdk. Ces oscillations correspondent à l’activation transitoire et répétitive des complexes cycline D/Cdk4-6 en phase G1, cycline E/Cdk2 à la transition G1/S, cycline A/Cdk2 en phase S et à la transition S/G2, et cycline B/Cdk1 à la transition G2/M. Le modèle rend compte de plusieurs propriétés majeures du cycle cellulaire des mammifères : (1) oscillations entretenues du réseau de Cdk en présence d’un niveau suffisant d’un facteur de croissance ; (2) contrôle de la progression dans le cycle cellulaire par la balance entre les effets antagonistes du suppresseur de tumeur pRB et du facteur de transcription E2F ; (3) existence d’un point de restriction situé dans la phase G1, au-delà duquel la cellule n’a plus besoin de la présence d’un facteur de croissance pour compléter son cycle de division cellulaire ; (4) entraînement du cycle cellulaire par l’horloge circadienne. Le modèle rend compte également du phénomène d’endoréplication qui correspond au découplage entre réplication de l’ADN et mitose : la cellule duplique à de multiples reprises son ADN sans entrer en phase de mitose. En incorporant des points de contrôle («checkpoints») dans le modèle pour le cycle cellulaire, et en particulier le point de contrôle de réplication de l’ADN régulé par les kinases ATR et Chk1, nous montrons comment ce point de contrôle ralentit la dynamique du cycle cellulaire et mène à une meilleure séparation des phases de réplication de l’ADN et de mitose. Le modèle pour le cycle cellulaire des cellules de mammifères montre comment la structure de régulation du réseau de cyclines/Cdk suscite son auto-organisation temporelle, menant à l’activation répétitive et séquentielle des quatre modules Cdk qui assurent la progression ordonnée dans les différentes phases du cycle cellulaire./We propose an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, and protein synthesis or degradation. Growth factors trigger the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4-6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. The model accounts for the following major properties of the mammalian cell cycle: (1) repetitive cell cycling in the presence of supra-threshold amounts of growth factor ; (2) control of cell cycle progression by the balance between antagonistic effects of the tumor suppressor pRB and the transcription factor E2F ; (3) existence of a restriction point in G1, beyond which completion of the cell cycle becomes independent of growth factor ; (4) entrainment of the cell cycle by the circadian clock. The model also accounts for endoreplication and for self-sustained oscillations in the presence of only Cdk1 or in the absence of pRB. Incorporating the DNA replication checkpoint mediated by kinases ATR and Chk1 slows down the dynamics of the cell cycle without altering its oscillatory nature and leads to better separation of the S and M phases. The model for the mammalian cell cycle shows how the regulatory structure of the Cdk network results in its temporal self-organization, leading to the repetitive, sequential activation of the four Cdk modules that brings about the orderly progression along cell cycle phases.
58

Rôle des répresseurs transcriptionnels Hes1/4 dans la maintenance des cellules souches rétiniennes chez Xenopus laevis

El yakoubi, Warif Abdelhamid 01 October 2012 (has links) (PDF)
Contrairement aux mammifères, la rétine des amphibiens et des poissons croît tout au long de la vie de l'animal grâce à l'activité de cellules souches neurales présentes dans une région de neurogenèse continue appelée zone marginale ciliaire (ZMC). Leur caractérisation moléculaire et la compréhension des mécanismes qui sous-tendent leur activité et leur maintenance pourraient trouver des applications majeures dans le traitement par thérapie cellulaire des patients atteints de pathologies neurodégénératives de la rétine. Au cours de ma thèse, je me suis principalement penché sur deux problématiques majeures : quelle est l'origine ontologique de ces cellules souches adultes et comment se maintiennent-elles au cours de la rétinogenèse embryonnaire ? J'ai abordé ces deux questions via l'analyse descriptive et fonctionnelle de deux gènes, Hes1 et Hes4, identifiés dans mon laboratoire comme des marqueurs spécifiques des cellules souches rétiniennes. Ces gènes codent pour des répresseurs transcriptionnels de type bHLHO. L'étude de leur dynamique d'expression au cours du développement montre que ces gènes marquent un territoire restreint, situé initialement à la frontière entre l'épithélium pigmenté rétinien (EPR) présomptif et la rétine neurale, dont l'évolution au cours du temps suggère qu'il est à l'origine de la cohorte des cellules souches adultes. Ces résultats permettent pour la première fois de proposer que ces dernières seraient ségrégées très tôt au cours de l'embryogenèse rétinienne des cellules destinées à se différencier. Je me suis ensuite posé la question du rôle de Hes1/4 dans la maintenance de ces cellules souches présomptives. Mes expériences de gain de fonction suggèrent que ces gènes contribuent de façon autonome cellulaire (i) à les empêcher de se différencier vers un destin EPR ou neuronal, (ii) à les maintenir en prolifération et (iii) à ralentir leurs divisions. Enfin, j'ai également travaillé à positionner les gènes Hes1/4 dans le réseau de signalisation qui contrôle les cellules souches rétiniennes en étudiant leur régulation par les voies Wnt, Hedgehog et Notch. L'ensemble de mes données me permet de proposer un modèle selon lequel les facteurs Hes1/4, sous contrôle positif de la voie Wnt, permettent au cours du développement la maintenance à l'état indifférencié et en prolifération lente d'une population cellulaire destinée à former la cohorte des cellules souches adultes de la ZMC.
59

Rôle de Brm dans le contrôle du cycle cellulaire et Étude de l'équilibre prolifération/différenciation des kératinocytes

Coisy-Quivy, Marjorie 16 December 2004 (has links) (PDF)
Les principaux régulateurs de la prolifération cellulaire sont les Cdk (cyclin dependent kinase), dont l'activité dépend de leur association avec leurs partenaires, les cyclines. Le contrôle du niveau d'expression des cyclines représente le premier mécanisme par lequel l'activité des Cdk est régulée. Cette régulation est essentielle pour maintenir l'équilibre prolifération/différenciation de la peau. Cependant, les mécanismes mis en jeu restent peu connus.<br />Nous avons montré que Brm, protéine des complexes de remodelage de la chromatine SWI/SNF, est responsable de la répression de la cycline A par la mise en place ou le maintien de deux nucléosomes situés sur les sites d'initiation de la transcription. De plus, nous avons mis en évidence que l'absence de brm conduit à accélérer la progression des cellules dans le cycle cellulaire en jouant sur le déroulement de la phase S. Cependant, les cellules dépourvues de brm présentent également une mitose rallongée et des aberrations chromosomiques. Ceci pourrait être la conséquence de la dérégulation de trois oncogènes : c-myc, cycline A et cycline E et pourrait expliquer pourquoi brm est mutée dans de nombreux cancers.<br />Enfin, nous avons montré que l'entrée en différenciation des kératinocytes s'accompagne d'une forte expression de p21 qui entraîne un arrêt en G2/M en inhibant les complexes Cycline A/Cdk. Cependant, les kératinocytes en différenciation ne peuvent maintenir cet arrêt et entre dans un état G1 à 4N, caractérisé par une forte expression de la Cycline E et l'absence de Cyclines de G2/M.
60

Étude du rôle de gènes contrôlant le cycle cellulaire au cours du développement racinaire de Cichorium intybus L. isoolement et caractérisation d'une cycline mitotique de type B de chicorée /

Poulain, Jérôme Matthias Rambour, Serge Inzé, Dirk. January 2003 (has links) (PDF)
Thèse doctorat : Stratégies d'exploitation des fonctions biologiques : Lille 1 : 2003. / Articles en anglais reproduits dans le texte. N° d'ordre (Lille 1) : 3331. Résumé en français et en anglais. Bibliogr. p. 120-129 et à la suite des articles.

Page generated in 0.0556 seconds