• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 84
  • 78
  • 32
  • 30
  • 17
  • 15
  • 8
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 583
  • 125
  • 104
  • 94
  • 76
  • 69
  • 61
  • 50
  • 48
  • 48
  • 48
  • 45
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Thermal Analysis of Multi-Cylinder Drying Section with variant Geometry

Roonprasang, Kiattisak 25 November 2008 (has links)
This specific-purpose mathematical model was developed for the drying process in a multi-cylinder drying section. The unsteady state of one-dimensional heat conduction equation has been applied to mathematical model of both, cylinder shell and paper web. The internal mass transfer of the paper web has not been included in this work. The calculations of the simulation program use an implicit numerical method. The drying path length along the machine direction has been divided into 4 drying phases for each drying cylinder. Each drying phase has been divided in small sub-elements. In each sub-element, the heat and mass transfer across boundary conditions have been solved simultaneously in the simulation program, which runs with MatLAB®.
462

Particles in a linearly stratified fluid

Khushal Ashok Bhatija (8081558) 04 December 2019 (has links)
The settling of spherical and cylindrical particles in a linearly stratified fluid is investigated using experiments. The double-tank method is used to generate a linear stratification with a red colored dye homogeneously mixed in the heavy water tank. As a result of feeding the stratification using dyed heavy water, the concentration of dye varies with depth in the experiment tank. A powerful back-light and a digital camera are used to record the events. Assuming the concentration of dye is directly proportional to density of fluid, Beer-Lambert's law is used to generate a calibration between intensity of the light measured by the camera and density of the fluid. Using this calibration, density is evaluated in all the images captured. In the parameter space of this study, the spheres have three different wake patterns. The area of fluid disturbed by a suspension of spheres increases with <i>Re</i> and <i>Fr</i>. As a result, the amount of energy available for the mixing and the irreversible change of total potential energy in the system increases with <i>Re</i>, <i>Fr</i> and number of particles. Cylinders drag volumes of light fluid to larger depths in their wake than spheres and shed the light fluid in the form of vortices. This results in lower volumes of fluid perturbed by the cylinders. However, as the light fluid is dragged to larger depths, the amount of energy generated for mixing and the change in total potential energy of the system is higher. Spheres are thus more efficient in disturbing volumes of fluid but cylinders are more efficient in causing irreversible changes to the state of the system.
463

Experimental tests of fluid exchange process improvement in a new design of hydraulic cylinder with a supply system

Siwulski, Tomasz, Warzynska, Urszula, Rys, Marcin, Skrzypczak, Maciej 25 June 2020 (has links)
The article presents the results of experimental tests of the liquid exchange level in a new design of a hydraulic cylinder in comparison with the classic one. Comparative results are presented, as well as the influence of the stroke range on the degree of liquid exchange. The results allow the empirical determination of the degree of real improvement of the process of liquid exchange in the cylinder during operation, and thus allow the initial determination of the reliability level increase in hydraulic cylinders. It should be emphasized that the presented results are a part of a research and implementation project carried out in cooperation between a university and an industrial partner. In addition, the presented test method of hydraulic cylinders is, in the opinion of the authors, an interesting proposition, which can be used by manufacturers of this type of components in the world.
464

A fast approach for coupled fluid-thermal modeling of the lubricating interfaces of axial piston machines

Mukherjee, Swarnava, Shang, Lizhi, Vacca, Andrea 25 June 2020 (has links)
The temperature distribution of the lubricating interfaces is an important aspect of the functioning of positive displacement machines. It can determine the efficiency and the life time of the unit. In particular, it directly affects the fluid properties and the thermal induced deformations of the solid bodies. A simulation tool capable of predicting the fluid temperature in such gaps thus becomes very useful in the design process of these machines. The temperature distribution in a film comprises of many physical phenomena including convection and conduction along and across the film. Past numerical approaches solved this multi-directional conduction-convection problem using a threedimensional(3D) grid, making the tool computationally expensive and unsuitable for fast simulations. This paper proposes a hybrid fluid temperature solver, based on, a low computational cost twodimensional(2D) grid, to reduce the simulation time with reasonable accuracy. The piston/cylinder interface of an axial piston machine is selected as reference case to demonstrate the proposed approach. The hybrid approach was found to speedup the simulation times by 36%.
465

Controlling a Hydraulic System using Reinforcement Learning : Implementation and validation of a DQN-agent on a hydraulic Multi-Chamber cylinder system

Berglund, David, Larsson, Niklas January 2021 (has links)
One of the largest energy losses in an excavator is the compensation loss. In a hydraulic load sensing system where one pump supplies multiple actuators, these compensation losses are inevitable. To minimize the compensation losses the use of a multi chamber cylinder can be used, which can control the load pressure by activate its chambers in different combinations and in turn minimize the compensation losses.  For this proposed architecture, the control of the multi chamber cylinder systems is not trivial. The possible states of the system, due to the number of combinations, makes conventional control, like a rule based strategy, unfeasible. Therefore, is the reinforcement learning a promising approach to find an optimal control.  A hydraulic system was modeled and validated against a physical one, as a base for the reinforcement learning to learn in simulation environment. A satisfactory model was achieved, accurately modeled the static behavior of the system but lacks some dynamics.  A Deep Q-Network agent was used which successfully managed to select optimal combinations for given loads when implemented in the physical test rig, even though the simulation model was not perfect.
466

Instability Measurements on Two Cone-Cylinder-Flares at Mach 6

Elizabeth Benitez (6196277) 26 July 2021 (has links)
This research focuses on measurements of a convective shear-layer instability seen naturally in quiet hypersonic flow. Experiments were carried out in the Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue University. The BAM6QT provides low-disturbance hypersonic flow with freestream noise levels similar to what would be experienced by a flight vehicle. To obtain high-speed, off-the-surface measurements of the instability, a modified focused laser differential interferometer (FLDI) was first designed to work with the contoured Plexiglas windows available in the tunnel.<div><br>A cone-cylinder-flare geometry was then selected to study the instabilities related to an axisymmetric separation bubble at Mach 6. The sharp cone had a 5-degree half-angle, while flare angles of 10 degrees and 3.5 degrees were tested to compare axisymmetric compression with and without separation, respectively. Under quiet flow, laminar separation and reattachment was confirmed by schlieren and surface pressure-fluctuation measurements. Coherent traveling waves were observed. These were attributed to both the second-mode instability, as well as a shear-generated instability from the separation bubble. The symmetry of the bubble was found to be highly sensitive to angle of attack. Additionally, by introducing controlled disturbances on the cone upstream of the separation, larger-amplitude shear-generated waves were measured while the second-mode amplitudes remained unchanged. Therefore, the shear-generated waves were amplified moving through the shear layer, while the second mode remained neutrally stable. These appear to be the first measurements of traveling waves that are generated in the shear layer of a separation bubble in hypersonic flow. <br></div>
467

A contribution to the global modeling of heat transfer processes in Diesel engines

Salvador Iborra, Josep 02 September 2020 (has links)
[EN] Current challenges in research and development of powertrains demand new computational tools capable of simulating vehicle operation under very diverse conditions. This is due, among other reasons, to new homologation standards in the automotive sector requiring compliance of exhaust emissions regulations under any possible driving condition on the road. Global engine or vehicle models provide many advantages to engineers because they allow to reproduce the entire system under study, considering the physical processes that take place in different components and the interactions among them. This thesis aims to enable the modeling of heat transfer processes in a complete engine simulation tool developed at CMT-Motores Térmicos research institute. This 0D/1D simulation tool is called Virtual Engine Model (VEMOD). The development of heat transfer models comprises the engine block and the ancillary systems. The model of heat transfer in the engine block deals with the central problem of in-cylinder convection by means of a combination of experimental research, CFD simulation and multizone 0D modeling. The other thermal processes present in the engine block are examined in order to implement suitable submodels. Once the model is complete, it undergoes a validation with experimental transient tests. Afterwards, the ancillary systems for engine thermal management are brought into focus. These systems are considered by means of two new models: a model of heat exchangers and a model of thermo-hydraulic circuits. The development of those models is reported in detail. Lastly, with the referred thermal models integrated in the global simulation tool, a validation study is undertaken. The goal is to validate the ability of the Virtual Engine Model to capture the thermal response of a real engine under various operating conditions. To achieve that, an experimental campaign combining tests under steady-state operation, under transient operation and at different temperatures is conducted in parallel to the corresponding simulation campaign. The capacity of the global engine simulations to replicate the measured thermal evolution is finally demonstrated. / [ES] Los retos actuales en la investigación y desarrollo de trenes de potencia demandan nuevas herramientas computacionales capaces de simular el funcionamento de un vehículo en condiciones muy diversas. Esto se debe, entre otras razones, a que los nuevos estándares de homologación en el sector de la automoción obligan al cumplimiento de las regulaciones de emisiones en cualquier condición posible de conducción en carretera. Los modelos globales de motor o de vehículo proporcionan muchas ventajas a los ingenieros porque permiten reproducir el sistema entero a estudiar, considerando los procesos físicos que tienen lugar en los distintos componentes y las interacciones entre ellos. Esta tesis pretende hacer posible el modelado de los procesos de transmisión de calor en una completa herramienta de simulación de motor desarrollada en el instituto de investigación CMT-Motores Térmicos. Esta herramienta de simulación 0D/1D se denomina Motor Virtual o Virtual Engine Model (VEMOD). El desarrollo de modelos de transmisión de calor comprende el bloque motor y los sistemas auxiliares. El modelo de transmisión de calor en el bloque motor aborda el problema central de la convección en el interior del cilindro mediante una combinación de investigación experimental, simulación CFD y modelado 0D multizona. El resto de procesos térmicos presentes en el bloque motor son examinados para poder implementar submodelos adecuados. Una vez el modelo está terminado, se realiza una validación con ensayos experimentales en régimen transitorio. A continuación, el foco de atención pasa a los sistemas auxiliares de gestión térmica. Estos sistemas se toman en consideración por medio de dos nuevos modelos: un modelo de intercambiadores de calor y un modelo de circuitos termohidráulicos. El desarrollo de los modelos se explica en detalle en esta tesis. Por último, con los citados modelos integrados en el Motor Virtual, se lleva a cabo un estudio de validación. El objectivo es validar la capacidad del Motor Virtual para reproducir la respuesta térmica de un motor real en varias condiciones de funcionamento. Para conseguirlo, se realiza una campaña experimental que combina ensayos en régimen estacionario, en régimen transitorio y a diferentes temperaturas, en paralelo a la campaña de simulación correspondiente. La capacidad de las simulaciones globales de motor para replicar la evolución térmica medida experimentalmente queda finalmente demostrada. / [CA] Els reptes actuals en la recerca i el desenvolupament de trens de potència demanden noves eines computacionals capaces de simular el funcionament d'un vehicle en condicions molt diverses. Açò es deu, entre altres raons, a que els nous estàndards d'homologació al sector de l'automoció obliguen al compliment de les regulacions d'emissions en qualsevol condició possible de conducció en carretera. Els models globals de motor o de vehicle proporcionen molts avantatges als enginyers perquè permeten reproduir el sistema sencer a estudiar, considerant els processos físics que tenen lloc als distints components i les interaccions entre ells. Aquesta tesi pretén fer possible el modelat dels processos de transmissió de calor en una completa eina de simulació de motor desenvolupada a l'institut de recerca CMT-Motores Térmicos. Aquesta eina de simulació 0D/1D s'anomena Motor Virtual o Virtual Engine Model (VEMOD). El desenvolupament de models de transmissió de calor comprén el bloc motor i els sistemes auxiliars. El model de transmissió de calor al bloc motor aborda el problema central de la convecció a l'interior del cilindre mitjançant una combinació de recerca experimental, simulació CFD i modelat 0D multizona. La resta de processos tèrmics presents al bloc motor són examinats per a poder implementar submodels adequats. Una vegada el model està acabat, es fa una validació amb assajos experimentals en règim transitori. A continuació, el focus d'atenció passa als sistemes auxiliars de gestió tèrmica. Aquests sistemes es prenen en consideració per mitjà de dos nous models: un model d'intercanviadors de calor i un model de circuits termohidràulics. El desenvolupament dels models s'explica en detall en aquesta tesi. Per últim, amb els referits models integrats al Motor Virtual, es porta a terme un estudi de validació. L'objectiu és validar la capacitat del Motor Virtual per a reproduir la resposta tèrmica d'un motor real en diverses condicions de funcionament. Per a assolir-ho, es realitza una campanya experimental que combina assajos en règim estacionari, en règim transitori i a diferents temperatures, en paral·lel a la campanya de simulació corresponent. La capacitat de les simulacions globals de motor per a replicar l'evolució tèrmica observada experimentalment queda finalment demostrada. / European funds received in the framework of Horizon 2020’s DiePeR project have contributed to the validation and improvement of the Virtual Engine Model. My own dedication has been funded by Universitat Politècnica de València through the predoctoral contract FPI-S2-2016-1357 of “Programa de Apoyo para la Investigaci´on y Desarrollo (PAID-01-16)”. / Salvador Iborra, J. (2020). A contribution to the global modeling of heat transfer processes in Diesel engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149575 / TESIS
468

The safety relevance of standardized tests for diving equipment

Silvanius, Mårten January 2020 (has links)
Vital components are more or less prone to fail in a diving apparatus. This thesis examines the performance of oxygen sensors, carbon dioxide scrubber monitoring and composite gas cylinders. A partial pressure of oxygen sensor authentication is suggested in a published patent and poster, weaknesses in carbon dioxide scrubber monitoring systems near surface are revealed in a published paper and potential harmful gas permeability properties of a composite gas cylinder, altering the gas composition and decreases the oxygen fraction, is measured and determined in a submitted paper.The importance of adequately and thoroughly performed safety tests that are standardized becomes even more relevant when managing personal protective equipment. The European Committee for Standardization have ratified relevant standard for the work in this thesis;EN-14143 Respiratory equipment – Self-contained re-breathing diving apparatus,EN-12245:2009+A1:2011 Transportable gas cylinders – Fully wrapped composite cylinders, andISO 11119-3:2013 Gas cylinders – Refillable composite gas cylinders and tubes – Design, construction and testing.These tests form a base-line for the methods, tests and result evaluations performed here and are considered safe; however improvements to the tests and standards can be made and are here suggested.
469

Fuel consumption measurements and fuelconditioning in high-pressure fuel systemfor single cylinder test cell / Mätning av bränsleförbrukning och konditionering av bränsle i högtrycksbränslesystem för encylinderprovcell

Aksoy, Can Aksoy January 2019 (has links)
This master thesis is part of a bigger project issued by AVL with the purpose to design a high pressure compression ignition fuel system for their single cylinder test cell at their facility in Södertälje. Typically compression-ignition fuel tests are being run within an operating pressure range of 500-2400 bar, but this system has to be able to run with pressures up to 3500 bar. The project was intended to be carried out by two participants where this master thesis covers the evaluation of how fuel consumption rates shall be measured in the system described above as well as how the fuel shall be conditioned. The selected concept for measuring fuel consumption rate was based on measuring the mass flow on the low-pressure side of the system with a Coriolis flowmeter. The chosen temperature sensor for monitoring the temperature on the high-pressure side was a K-type thermocouple which would be directly connected to the fuel rail in the system. A bleeder was selected on the basis that it had been used in one of AVL's old test cells. A heat exchanger could not be chosen. However a rough estimation of the capacity needed for a heat exchanger was calculated for future reference. The methodology used to develop a concept was based on the engineering project process taught to students at Karlstad University. First a project plan was made followed by a solution-independently expressed product specification including a specification of requirements and QFD-matrix. Several concepts were generated for measuring the fuel consumption by evaluating different measuring principles, available components, possible positions of the components within the system and combinations with different fuel supply concepts. Less extensive methods were used for the remaining tasks in the detailed engineering phase of the project. The concepts were compared using Pugh's analysis and a concept was selected in collaboration with AVL. The majority of the objectives for this master thesis could be successfully carried out. The documentation and drawings requested by the client, manufacturing of the system, implementation and validation into the test cell could not be done due to lack of time. This, along with the selection of a heat exchanger and low-pressure thermocouple was left for future work.
470

Snižování vibrací a akustických emisí pohonných jednotek aplikací virtuálního motoru / Vibration and Acoustic Emission Reduction of Powertrains using Virtual Engine

Svída, David January 2011 (has links)
Doctoral thesis deals with combustion engine cranktrain vibrations and vibration analysis methods. The work applies new computational models aimed at powertrain vibration decrease. The computational models can be used in the first stages of powertrain development. Temperature dependences of the rubber shear modulus and loss factor characteristic are found by response analysis of the free damped vibrations in the first part of the thesis. Viscoelastic model parameters of two dampers with different rubber hardness are calculated using optimization methods. Temperature distribution inside the rubber part during the harmonic oscillation is calculated with the knowledge of previous values. Computational models together with a user interface are assembled in Matlab/Simulink software tool. Computational model results of the viscoelastic rubber damper are verified by measurements on a prototype diesel engine in the whole operating engine speed range. Torsional vibrations of the crankshaft with torsional damper are measured by POLYTEC laser rotational tools. The temperature distribution on the damper surface is obtained by Infratec VarioCAM thermographic system. Combustion pressures in the cylinder are measured by SMETEC Combi indication tools. Both the temperature distributions and combustion pressures are used for computational purposes. All the measurement procedures are described also in the thesis.

Page generated in 0.0356 seconds